Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene charge-injection photodetectors

Abstract

Charge-coupled devices are widely used imaging technologies. However, their speed is limited due to the complex readout process, which involves sequential charge transfer between wells, and their spectral bandwidth is limited due to the absorption limitations of silicon. Here we report graphene charge-injection photodetectors. The devices have a deep-depletion silicon well for charge integration, single-layer graphene for non-destructive direct readout and multilayer graphene for infrared photocharge injection. The photodetectors offer broadband imaging from ultraviolet (around 375 nm) to mid-infrared (around 3.8 μm), a conversion gain of 700 pA per electron, a responsivity above 0.1 A W−1 in the infrared region and a fast response time under 1 μs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure and band diagram of GCI.
Fig. 2: Characterization of GCI.
Fig. 3: Characterization of GCI in the IR range.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Boyle, W. S. & Smith, G. E. Charge coupled semiconductor devices. Bell Syst. Tech. J. 49, 587–593 (1970).

    Article  Google Scholar 

  2. Amelio, G. F. et al. Experimental verification of the charge coupled device concept. Bell Syst. Tech. J. 49, 593–600 (1970).

    Article  Google Scholar 

  3. Smith, G. E. Nobel lecture: the invention and early history of the CCD. Rev. Mod. Phys. 82, 2307–2312 (2010).

    Article  Google Scholar 

  4. Nakata, S. et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat. Electron. 1, 596–603 (2018).

    Article  Google Scholar 

  5. Zhang, H.-F. et al. Scientific CCD camera for the CSTAR2 telescope in Antarctica. J. Astron. Telesc. Instrum. Syst. 5, 036002 (2019).

    Google Scholar 

  6. Tiffenberg, J. et al. Single-electron and single-photon sensitivity with a silicon skipper CCD. Phys. Rev. Lett. 119, 131802 (2017).

    Article  Google Scholar 

  7. Murata, M. et al. A 24.3 Me full well capacity CMOS image sensor with lateral overflow integration trench capacitor for high precision near infrared absorption imaging. in 2018 IEEE International Electron Devices Meeting (IEDM) 10.3.1–10.3.4 (IEEE, 2018).

  8. Kim, W.-T. et al. A high full well capacity CMOS image sensor for space applications. Sensors 19, 1505 (2019).

    Article  Google Scholar 

  9. Durini, D. & Arutinov, D. in High Performance Silicon Imaging 2nd edn (ed Durini, D.) 25–73 (Woodhead Publishing, 2020).

  10. Magnan, P. Detection of visible photons in CCD and CMOS: a comparative view. Nucl. Instrum. Methods Phys. Res. A 504, 199–212 (2003).

    Article  Google Scholar 

  11. Luštica, A. CCD and CMOS image sensors in new HD cameras. in Proc. ELMAR-2011 133–136 (IEEE, 2011).

  12. Marcelot, O. et al. Study of CCD transport on CMOS imaging technology: comparison between SCCD and BCCD, and ramp effect on the CTI. IEEE Trans. Electron Devices 61, 844–849 (2014).

    Article  Google Scholar 

  13. Gamal, A. E. & Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 21, 6–20 (2005).

    Article  Google Scholar 

  14. Suzuki, M. et al. An over 1Mfps global shutter CMOS image sensor with 480 frame storage using vertical analog memory integration. in 2016 IEEE International Electron Devices Meeting 8.5.1–8.5.4 (IEEE, 2016).

  15. Bigas, M. et al. Review of CMOS image sensors. Microelectron. J. 37, 433–451 (2006).

    Article  Google Scholar 

  16. Shepherd, F. D. & Yang, A. C. Silicon Schottky retinas for infrared imaging. in International Electron Devices Meeting 310–313 (IEEE, 1973).

  17. Yutani, N. et al. 1040*1040 element PtSi Schottky-barrier IR image sensor. in International Electron Devices Meeting 1991 175–178 (IEEE, 1991).

  18. Denda, M. et al. 4-band*4096-element Schottky-barrier infrared linear image sensor. IEEE Trans. Electron Devices 38, 1131–1135 (1991).

    Article  Google Scholar 

  19. Leitz, C. et al. Development of germanium charge-coupled devices. in Proc. SPIE 10709 High Energy, Optical, and Infrared Detectors for Astronomy VIII 1070908 (International Society for Optics and Photonics, 2018).

  20. Manda, S. et al. High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of III-V to silicon wafer. in 2019 IEEE International Electron Devices Meeting (IEDM) 16.7.1–16.7.4 (IEEE, 2019).

  21. Wang, Y. et al. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der Waals on epitaxial HgCdTe. Adv. Mater. 34, 2107772 (2022).

    Article  Google Scholar 

  22. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    Article  Google Scholar 

  23. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  Google Scholar 

  24. Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).

    Article  Google Scholar 

  25. Zhu, Y. et al. Mass production and industrial applications of graphene materials. Natl Sci. Rev. 5, 90–101 (2017).

    Article  Google Scholar 

  26. Howell, S. W. et al. Graphene-insulator-semiconductor junction for hybrid photodetection modalities. Sci. Rep. 7, 14651 (2017).

    Article  Google Scholar 

  27. Ruiz, I. et al. Interface defect engineering for improved graphene-oxide-semiconductor junction photodetectors. ACS Appl. Nano Mater. 2, 6162–6168 (2019).

    Article  Google Scholar 

  28. Liu, C.-H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    Article  Google Scholar 

  29. Chen, X. et al. Graphene hybrid structures for integrated and flexible optoelectronics. Adv. Mater. 32, 1902039 (2019).

  30. Bao, Q. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012).

    Article  Google Scholar 

  31. Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    Article  Google Scholar 

  32. Yu, X. et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8, 327–332 (2016).

    Article  Google Scholar 

  33. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 9, 4299 (2018).

    Article  Google Scholar 

  34. Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016).

    Article  Google Scholar 

  35. Liu, Y. et al. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  Google Scholar 

  36. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  37. Shimatani, M. et al. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current. AIP Adv. 6, 035113 (2016).

    Article  Google Scholar 

  38. Guo, X. et al. High-performance graphene photodetector using interfacial gating. Optica 3, 1066–1070 (2016).

    Article  Google Scholar 

  39. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  Google Scholar 

  40. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017).

    Article  Google Scholar 

  41. Ioannou, D. E. & Dimitriadis, C. A. A SEM-EBIC minority-carrier diffusion-length measurement technique. IEEE Trans. Electron Devices 29, 445–450 (1982).

    Article  Google Scholar 

  42. Castaldini, A. et al. Determination of bulk and surface transport properties by photocurrent spectral measurements. Appl. Phys. A 71, 305–310 (2000).

    Article  Google Scholar 

  43. Tan, S. et al. Ultrafast multiphoton thermionic photoemission from graphite. Phys. Rev. X 7, 011004 (2017).

    Google Scholar 

  44. Berashevich, J. & Chakraborty, T. Interlayer repulsion and decoupling effects in stacked turbostratic graphene flakes. Phys. Rev. B 84, 033403 (2011).

    Article  Google Scholar 

  45. Shallcross, S. et al. Electronic structure of turbostratic graphene. Phys. Rev. B 81, 165105 (2010).

    Article  Google Scholar 

  46. Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

    Article  Google Scholar 

  47. Yuan, S. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photonics 7, 1206–1215 (2020).

    Article  Google Scholar 

  48. Fang, B. et al. Bidirectional mid-infrared communications between two identical macroscopic graphene fibres. Nat. Commun. 11, 6368 (2020).

    Article  Google Scholar 

  49. Xu, J. et al. Ultra-broadband graphene-InSb heterojunction photodetector. Appl. Phys. Lett. 111, 051106 (2017).

    Article  Google Scholar 

  50. Yin, J. et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 10, 113 (2021).

    Article  Google Scholar 

  51. Zhu, H. et al. Metal–oxide–semiconductor-structured MgZnO ultraviolet photodetector with high internal gain. J. Phys. Chem. C 114, 7169–7172 (2010).

    Article  Google Scholar 

  52. Wang, W. J. et al. Metal–insulator–semiconductor–insulator–metal structured titanium dioxide ultraviolet photodetector. J. Phys. D: Appl. Phys. 43, 045102 (2010).

    Article  Google Scholar 

  53. Janesick, J. R. Scientific charge-coupled devices. Opt. Eng. 26, 268692 (2001).

  54. Lahav, A. et al. in High Performance Silicon Imaging 2nd edn (ed Durini, D.) 95–117 (Woodhead Publishing, 2020).

  55. Wan, X. et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. Appl. 1, 4 (2017).

    Article  Google Scholar 

  56. Peng, L. et al. Multifunctional macroassembled graphene nanofilms with high crystallinity. Adv. Mater. 33, 2104195 (2021).

    Article  Google Scholar 

  57. Grojo, D. et al. Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 88, 195135 (2013).

    Article  Google Scholar 

  58. Briggman, K. A. et al. Imaging and autocorrelation of ultrafast infrared laser pulses in the 3–11-μm range with silicon CCD cameras and photodiodes. Opt. Lett. 26, 238–240 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Jin and X. Zhang for help on the NIR test and L. Chen and H. Zhu for help on the MIR test. We thank E. Li, W. Yin, D. Dai, W. Chen, K. Huang, Z. Tan, H. Shen, C. Li, S. Song, Q. Xiong and T. Low for valuable discussions. Y.X. acknowledges the support of this work by NSFC (grant nos.92164106, 61874094, 62090030 and 52090030); the Fundamental Research Funds for the Central Universities (K20200060 and 2021FZZX001-17); ZJU Micro-Nano Fabrication Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.X., H.G. and X.D. designed the research. Y.X., H.G., W. L. and J.L. designed the experiment. L.P. and C.G. synthesized the MLG and developed the transfer methods. K.L. synthesized the SLG. Y.X., W.L., J.L., C.L. and Y.L. fabricated the devices and carried out the measurements. Y.X., L. Liu and L. Li assisted in part of the experiment. Y.X., H.G., P.W., S.C.B., K.S., Z.S., T.H. and B.Y. helped improve the manuscript. Y.X., X.W., C.G., B.Y., and X.D. guided the project. All the authors contributed to interpreting the data and writing the manuscript.

Corresponding authors

Correspondence to Yang Xu, Xiaomu Wang, Chao Gao, Bin Yu or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Lukas Mennel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–10, Figs. 1–16 and Table 1.

Supplementary Data

Data for Supplementary Figs. 1, 4–11 and 16.

Supplementary Data

Data for Supplementary Fig. 15.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Lv, J., Peng, L. et al. Graphene charge-injection photodetectors. Nat Electron 5, 281–288 (2022). https://doi.org/10.1038/s41928-022-00755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00755-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing