Abstract
The greatest challenge in quantum computing is achieving scalability. Classical computing, which previously faced such issues, currently relies on silicon chips hosting billions of fin field-effect transistors. These devices are small enough for quantum applications: at low temperatures, an electron or hole trapped under the gate can serve as a spin qubit. Such an approach potentially allows the quantum hardware and its classical control electronics to be integrated on the same chip. However, this requires qubit operation at temperatures above 1 K, where the cooling overcomes heat dissipation. Here we show that silicon fin field-effect transistors can host spin qubits operating above 4 K. We achieve fast electrical control of hole spins with driving frequencies up to 150 MHz, single-qubit gate fidelities at the fault-tolerance threshold and a Rabi-oscillation quality factor greater than 87. Our devices feature both industry compatibility and quality, and are fabricated in a flexible and agile way that should accelerate further development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data supporting the plots within this paper are available at the Zenodo repository: https://doi.org/10.5281/zenodo.4579586
References
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).
Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2017).
Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).
Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).
Kuhlmann, A. V., Deshpande, V., Camenzind, L. C., Zumbühl, D. M. & Fuhrer, A. Ambipolar quantum dots in undoped silicon fin field-effect transistors. Appl. Phys. Lett. 113, 122107 (2018).
Geyer, S. et al. Self-aligned gates for scalable silicon quantum computing. Appl. Phys. Lett. 118, 104004 (2021).
Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).
Franke, D., Clarke, J., Vandersypen, L. & Veldhorst, M. Rent’s rule and extensibility in quantum computing. Microprocess. Microsyst. 67, 1–7 (2019).
Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).
Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).
Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).
Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).
Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).
Hendrickx, N. W. et al. A single-hole spin qubit. Nat. Commun. 11, 3478 (2020).
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
Froning, F. N. M. et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 16, 308–312 (2021).
Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).
Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).
Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).
Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).
Voisin, B. et al. Electrical control of g-factor in a few-hole silicon nanowire MOSFET. Nano Lett. 16, 88–92 (2015).
Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).
Auth, C. et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In 2012 Symposium on VLSI Technology (VLSIT) 131–132 (IEEE, 2012).
Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In 2017 IEEE International Electron Devices Meeting (IEDM) 29.1.1–29.1.4 (IEEE, 2017).
Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 4, 656–661 (2008).
Bosco, S., Hetényi, B. & Loss, D. Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling and sweet spots for charge noise. PRX Quantum 2, 010348 (2021).
Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).
Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Preprint at https://arxiv.org/abs/2101.12650 (2021).
Ono, K., Austing, D., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).
Li, R., Hudson, F. E., Dzurak, A. S. & Hamilton, A. R. Pauli spin blockade of heavy holes in a silicon double quantum dot. Nano Lett. 15, 7314–7318 (2015).
Seedhouse, A. E. et al. Pauli blockade in silicon quantum dots with spin-orbit control. PRX Quantum 2, 010303 (2021).
Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).
Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).
Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter 27, 154205 (2015).
Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).
Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688 (1958).
Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).
Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).
Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).
Hutin, L. et al. Si MOS technology for spin-based quantum computing. In 2018 48th European Solid-State Device Research Conference (ESSDERC) 12–17 (IEEE, 2018).
Assali, L. V. C. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011).
Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).
Huang, J. Y. et al. A high-sensitivity charge sensor for silicon qubits above 1 K. Nano Lett. 21, 6328–6335 (2021).
Noiri, A. et al. Radio-frequency-detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).
Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
Acknowledgements
We thank M. de Kruijf, C. Kloeffel, D. Loss, F. Froning and F. Braakman for fruitful discussions. Moreover, we acknowledge support by the cleanroom operation team, particularly U. Drechsler, A. Olziersky and D. D. Pineda, at the IBM Binnig and Rohrer Nanotechnology Center, as well as technical support at the University of Basel by S. Martin and M. Steinacher. This work was partially supported by the Georg H. Endress Foundation, the NCCR SPIN, the Swiss Nanoscience Institute (SNI), the Swiss NSF (grant no. 179024), and the EU H2020 European Microkelvin Platform EMP (grant no. 824109). L.C.C. acknowledges support by a Swiss NSF mobility fellowship (P2BSP2_200127).
Author information
Authors and Affiliations
Contributions
A.V.K., L.C.C., S.G., A.F., R.J.W. and D.M.Z. conceived the project and experiments. A.V.K. and S.G. fabricated the device. L.C.C. and D.M.Z. prepared the cryogenic measurement setup. A.V.K., S.G., L.C.C. and D.M.Z. performed the experiments. A.V.K., L.C.C. and S.G. analysed the data and wrote the manuscript with input from all the authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Electronics thanks Xavier Jehl, Andre Saraiva and Tetsufumi Tanamoto for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–12 and Sections 1–14.
Rights and permissions
About this article
Cite this article
Camenzind, L.C., Geyer, S., Fuhrer, A. et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nat Electron 5, 178–183 (2022). https://doi.org/10.1038/s41928-022-00722-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-022-00722-0
This article is cited by
-
A singlet-triplet hole-spin qubit in MOS silicon
Nature Communications (2024)
-
High temperature spin selectivity in a quantum dot qubit using reservoir spin accumulation
npj Quantum Information (2024)
-
Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning
Scientific Reports (2024)
-
Low charge noise quantum dots with industrial CMOS manufacturing
npj Quantum Information (2024)
-
Anisotropic exchange interaction of two hole-spin qubits
Nature Physics (2024)