Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hole spin qubit in a fin field-effect transistor above 4 kelvin


The greatest challenge in quantum computing is achieving scalability. Classical computing, which previously faced such issues, currently relies on silicon chips hosting billions of fin field-effect transistors. These devices are small enough for quantum applications: at low temperatures, an electron or hole trapped under the gate can serve as a spin qubit. Such an approach potentially allows the quantum hardware and its classical control electronics to be integrated on the same chip. However, this requires qubit operation at temperatures above 1 K, where the cooling overcomes heat dissipation. Here we show that silicon fin field-effect transistors can host spin qubits operating above 4 K. We achieve fast electrical control of hole spins with driving frequencies up to 150 MHz, single-qubit gate fidelities at the fault-tolerance threshold and a Rabi-oscillation quality factor greater than 87. Our devices feature both industry compatibility and quality, and are fabricated in a flexible and agile way that should accelerate further development.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spin–orbit qubits in a FinFET.
Fig. 2: Hot qubit coherence.
Fig. 3: X, Y and Z qubit gates.
Fig. 4: Dynamical decoupling and noise spectroscopy.

Data availability

The data supporting the plots within this paper are available at the Zenodo repository:


  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    Google Scholar 

  2. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Google Scholar 

  3. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Google Scholar 

  4. Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

    Google Scholar 

  5. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2017).

    Google Scholar 

  6. Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Google Scholar 

  7. Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Google Scholar 

  8. Kuhlmann, A. V., Deshpande, V., Camenzind, L. C., Zumbühl, D. M. & Fuhrer, A. Ambipolar quantum dots in undoped silicon fin field-effect transistors. Appl. Phys. Lett. 113, 122107 (2018).

    Google Scholar 

  9. Geyer, S. et al. Self-aligned gates for scalable silicon quantum computing. Appl. Phys. Lett. 118, 104004 (2021).

    Google Scholar 

  10. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    Google Scholar 

  11. Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    Google Scholar 

  12. Franke, D., Clarke, J., Vandersypen, L. & Veldhorst, M. Rent’s rule and extensibility in quantum computing. Microprocess. Microsyst. 67, 1–7 (2019).

    Google Scholar 

  13. Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    Google Scholar 

  14. Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    Google Scholar 

  15. Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).

    Google Scholar 

  16. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    Google Scholar 

  17. Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).

    Google Scholar 

  18. Hendrickx, N. W. et al. A single-hole spin qubit. Nat. Commun. 11, 3478 (2020).

    Google Scholar 

  19. Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    Google Scholar 

  20. Froning, F. N. M. et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 16, 308–312 (2021).

    Google Scholar 

  21. Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).

    Google Scholar 

  22. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

    Google Scholar 

  23. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Google Scholar 

  24. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Google Scholar 

  25. Voisin, B. et al. Electrical control of g-factor in a few-hole silicon nanowire MOSFET. Nano Lett. 16, 88–92 (2015).

    Google Scholar 

  26. Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).

    Google Scholar 

  27. Auth, C. et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In 2012 Symposium on VLSI Technology (VLSIT) 131–132 (IEEE, 2012).

  28. Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In 2017 IEEE International Electron Devices Meeting (IEDM) 29.1.1–29.1.4 (IEEE, 2017).

  29. Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 4, 656–661 (2008).

    Google Scholar 

  30. Bosco, S., Hetényi, B. & Loss, D. Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling and sweet spots for charge noise. PRX Quantum 2, 010348 (2021).

    Google Scholar 

  31. Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).

    Google Scholar 

  32. Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Preprint at (2021).

  33. Ono, K., Austing, D., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Google Scholar 

  34. Li, R., Hudson, F. E., Dzurak, A. S. & Hamilton, A. R. Pauli spin blockade of heavy holes in a silicon double quantum dot. Nano Lett. 15, 7314–7318 (2015).

    Google Scholar 

  35. Seedhouse, A. E. et al. Pauli blockade in silicon quantum dots with spin-orbit control. PRX Quantum 2, 010303 (2021).

    Google Scholar 

  36. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Google Scholar 

  37. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Google Scholar 

  38. Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter 27, 154205 (2015).

    Google Scholar 

  39. Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).

    Google Scholar 

  40. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688 (1958).

    Google Scholar 

  41. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Google Scholar 

  42. Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    Google Scholar 

  43. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    MathSciNet  Google Scholar 

  44. Hutin, L. et al. Si MOS technology for spin-based quantum computing. In 2018 48th European Solid-State Device Research Conference (ESSDERC) 12–17 (IEEE, 2018).

  45. Assali, L. V. C. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011).

    Google Scholar 

  46. Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).

    Google Scholar 

  47. Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).

    Google Scholar 

  48. Huang, J. Y. et al. A high-sensitivity charge sensor for silicon qubits above 1 K. Nano Lett. 21, 6328–6335 (2021).

    Google Scholar 

  49. Noiri, A. et al. Radio-frequency-detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).

    Google Scholar 

  50. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    Google Scholar 

Download references


We thank M. de Kruijf, C. Kloeffel, D. Loss, F. Froning and F. Braakman for fruitful discussions. Moreover, we acknowledge support by the cleanroom operation team, particularly U. Drechsler, A. Olziersky and D. D. Pineda, at the IBM Binnig and Rohrer Nanotechnology Center, as well as technical support at the University of Basel by S. Martin and M. Steinacher. This work was partially supported by the Georg H. Endress Foundation, the NCCR SPIN, the Swiss Nanoscience Institute (SNI), the Swiss NSF (grant no. 179024), and the EU H2020 European Microkelvin Platform EMP (grant no. 824109). L.C.C. acknowledges support by a Swiss NSF mobility fellowship (P2BSP2_200127).

Author information

Authors and Affiliations



A.V.K., L.C.C., S.G., A.F., R.J.W. and D.M.Z. conceived the project and experiments. A.V.K. and S.G. fabricated the device. L.C.C. and D.M.Z. prepared the cryogenic measurement setup. A.V.K., S.G., L.C.C. and D.M.Z. performed the experiments. A.V.K., L.C.C. and S.G. analysed the data and wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Dominik M. Zumbühl or Andreas V. Kuhlmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xavier Jehl, Andre Saraiva and Tetsufumi Tanamoto for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Sections 1–14.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camenzind, L.C., Geyer, S., Fuhrer, A. et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nat Electron 5, 178–183 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing