Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Remote modulation doping in van der Waals heterostructure transistors


Doping is required to modulate the electrical properties of semiconductors but introduces impurities that lead to Coulomb scattering, which hampers charge transport. Such scattering is a particular issue in two-dimensional semiconductors because charged impurities are in close proximity to the atomically thin channel. Here we report the remote modulation doping of a two-dimensional transistor that consists of a band-modulated tungsten diselenide/hexagonal boron nitride/molybdenum disulfide heterostructure. The underlying molybdenum disulfide channel is remotely doped via controlled charge transfer from dopants on the tungsten diselenide surface. The modulation-doped device exhibits two-dimensional-confined charge transport and the suppression of impurity scattering, shown by increasing mobility with decreasing temperature. Our molybdenum disulfide modulation-doped field-effect transistors exhibit a room-temperature mobility of 60 cm2 V–1 s1; in comparison, transistors that have been directly doped exhibit a mobility of 35 cm2 V–1 s1.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Band-modulated WSe2/hBN/MoS2 heterostructure for remote doping.
Fig. 2: Remote modulation doping in WSe2/hBN/MoS2 heterostructures via charge transfer.
Fig. 3: Low-temperature transport measurements of MD MoS2 FETs.
Fig. 4: Temperature-dependent mobility behaviour and the related scattering mechanism.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Shi, W. et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron. 3, 99–105 (2020).

    Article  Google Scholar 

  2. 2.

    Lee, S.-J., Lin, Z., Duan, X. & Huang, Y. Doping on demand in 2D devices. Nat. Electron. 3, 77–78 (2020).

    Article  Google Scholar 

  3. 3.

    Dillen, D. C., Kim, K., Liu, E.-S. & Tutuc, E. Radial modulation doping in core–shell nanowires. Nat. Nanotechnol. 9, 116–120 (2014).

    Article  Google Scholar 

  4. 4.

    Chen, Y. Z. et al. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. Nat. Mater. 14, 801–806 (2015).

    Article  Google Scholar 

  5. 5.

    Lee, H. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nat. Mater. 17, 231–236 (2018).

    Article  Google Scholar 

  6. 6.

    Dingle, R., Störmer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation‐doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

    Article  Google Scholar 

  7. 7.

    Khan, M. A., Hove, J. M. V., Kuznia, J. N. & Olson, D. T. High electron mobility GaN/AlxGa1−xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 58, 2408–2410 (1991).

    Article  Google Scholar 

  8. 8.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  Google Scholar 

  9. 9.

    Nelson, S. F. et al. Observation of the fractional quantum Hall effect in Si/SiGe heterostructures. Appl. Phys. Lett. 61, 64–66 (1992).

    Article  Google Scholar 

  10. 10.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  11. 11.

    Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  Google Scholar 

  12. 12.

    Lee, D. et al. Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials. Small 15, 1804303 (2019).

    Google Scholar 

  13. 13.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  Google Scholar 

  14. 14.

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  Google Scholar 

  15. 15.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  16. 16.

    Li, S.-L., Tsukagoshi, K., Orgiu, E. & Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118–151 (2016).

    Article  Google Scholar 

  17. 17.

    Kang, S. et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Mater. 7, 022003 (2020).

    Article  Google Scholar 

  18. 18.

    Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  Google Scholar 

  19. 19.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1140 (2013).

    Article  Google Scholar 

  20. 20.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  Google Scholar 

  21. 21.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  Google Scholar 

  22. 22.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  Google Scholar 

  23. 23.

    Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    Article  Google Scholar 

  24. 24.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  Google Scholar 

  25. 25.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  Google Scholar 

  26. 26.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  Google Scholar 

  27. 27.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  Google Scholar 

  28. 28.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  Google Scholar 

  29. 29.

    Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  30. 30.

    Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Article  Google Scholar 

  31. 31.

    Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  32. 32.

    Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    Article  Google Scholar 

  33. 33.

    Lim, D. et al. High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnology 27, 225201 (2016).

    Article  Google Scholar 

  34. 34.

    Jo, S.-H. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 28, 4824–4831 (2016).

    Article  Google Scholar 

  35. 35.

    Li, H.-M. et al. Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 6, 6564 (2015).

    Article  Google Scholar 

  36. 36.

    Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).

    Article  Google Scholar 

  37. 37.

    Zhao, Y. et al. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017).

    Article  Google Scholar 

  38. 38.

    Li, S.-L. et al. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 8, 12836–12842 (2014).

    Article  Google Scholar 

  39. 39.

    Simon, J., Protasenko, V., Lian, C., Xing, H. & Jena, D. Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010).

    Article  Google Scholar 

  40. 40.

    Lee, I. et al. Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv. Mater. 28, 9519–9525 (2016).

    Article  Google Scholar 

  41. 41.

    Song, S. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit. Nat. Electron. 3, 207–215 (2020).

    Article  Google Scholar 

  42. 42.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  Google Scholar 

  43. 43.

    Zheng, X. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2, 17–25 (2019).

    Article  Google Scholar 

  44. 44.

    Gurvitch, M. Ioffe-Regel criterion and resistivity of metals. Phys. Rev. B 24, 7404–7407 (1981).

    Article  Google Scholar 

  45. 45.

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  Google Scholar 

  46. 46.

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  47. 47.

    Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

    Article  Google Scholar 

  48. 48.

    Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  Google Scholar 

  49. 49.

    Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  Google Scholar 

  50. 50.

    Lee, J. Y. et al. Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. Nano Energy 65, 104053 (2019).

    Article  Google Scholar 

Download references


This work was supported by the National Research Foundation (NRF) of Korea (2021M3H4A1A01079471, 2020R1A2C2009389, 2017R1A5A1014862 (SRC Program: vdWMRC center) and 2020M3H3A1105796) and the KU-KIST School Project. D.L. acknowledges support from the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2020R1I1A1A01071872). Y.D.K. and J.J.L. acknowledge support from the NRF of Korea (2021M3H4A1A03054856). Low-temperature measurements were supported by a grant from Kyung Hee University in 2019 (KHU-20192441).

Author information




C.-H.L. and D.L. conceived the idea and supervised the project. D.L. fabricated the devices and performed the measurements and data analysis. Y.S.K., W.H., J.L., S.P. and Y.H.K. assisted with the device fabrications. J.C.K. and H.Y.J. performed the cross-sectional high-resolution transmission electron microscopy analysis. D.L., J.J.L. and Y.D.K. carried out the low-temperature measurements. D.L. and C.-H.L. wrote the manuscript. All the authors contributed to discussions.

Corresponding authors

Correspondence to Donghun Lee or Chul-Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Du Xiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Lee, J.J., Kim, Y.S. et al. Remote modulation doping in van der Waals heterostructure transistors. Nat Electron 4, 664–670 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing