Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An organic transistor with light intensity-dependent active photoadaptation


The development of artificial visual systems that mimic biological systems requires devices that can autonomously adapt their response to varying stimuli. However, emulating biological feedforward visual adaptation is challenging and requires complementary photoexcitation and inhibition, ideally in a single device. Here we show that an organic transistor that incorporates two bulk heterojunctions is capable of light intensity-dependent active photoadaptation. The approach couples the photovoltaic effect in bulk heterojunctions with electron trapping in the dielectric layer, allowing adaptive modulation of the carrier concentration of the transistor. Our device exhibits active photoadaptation behaviour for light intensities ranging over six orders of magnitude (1 to 106 cd m−2). We also define an active adaptation index to describe the luminance-dependent changes to sensitivity, including auto-background control, which for our devices is comparable to that of the human visual system (less than 2 s at 1 × 104 cd m−2).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Visual adaptation in bioreceptors and a bioinspired OAAT.
Fig. 2: Characterization of active adaptation behaviour.
Fig. 3: Identification of the fundamental role of the two BHJs in an OAAT.
Fig. 4: Working mechanism of the electric behaviour in an OAAT.
Fig. 5: Biomimetic visual perception ability of OAATs.

Data availability

The data that support the plots within this paper and other findings of this study are available from Zenodo (

Code availability

The code that supports the theoretical plots within this paper is available from the corresponding author upon reasonable request.


  1. 1.

    Wang, H. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30, 1803961 (2018).

    Article  Google Scholar 

  2. 2.

    Park, H.-L. et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32, e1906899 (2020).

    Article  Google Scholar 

  3. 3.

    Kwon, S. M. et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 31, 1906433 (2019).

    Article  Google Scholar 

  4. 4.

    Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  Google Scholar 

  5. 5.

    Wang, X. et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small 17, 2005491 (2021).

    Article  Google Scholar 

  6. 6.

    Webster, M. A. Visual adaptation. Annu. Rev. Vis. Sci. 1, 547–567 (2015).

    Article  Google Scholar 

  7. 7.

    Mante, V., Frazor, R. A., Bonin, V., Geisler, W. S. & Carandini, M. Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8, 1690–1697 (2005).

    Article  Google Scholar 

  8. 8.

    Smirnakis, S. M., Berry, M. J., Warland, D. K., Blalek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    Article  Google Scholar 

  9. 9.

    Webster, M. A. & Mollon, J. D. Colour constancy influenced by contrast adaptation. Nature 373, 694–698 (1995).

    Article  Google Scholar 

  10. 10.

    Esfahani, Z. K. et al. Monolithically integrated light feedback control circuit for blue/UV LED smart package. IEEE Photon. J. 9, 2400213 (2017).

    Google Scholar 

  11. 11.

    Polyushkin, D. K. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    Article  Google Scholar 

  12. 12.

    Zliobaite, I. & Gabrys, B. Adaptive preprocessing for streaming data. IEEE Trans. Knowl. Data Eng. 26, 309–321 (2012).

    Article  Google Scholar 

  13. 13.

    Lee, Y. R., Trung, T. Q., Hwang, B.-U. & Lee, N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).

    Article  Google Scholar 

  14. 14.

    Yang, B. et al. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv. Mater. 32, 2001227 (2020).

    Article  Google Scholar 

  15. 15.

    Qian, C. et al. Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis. Adv. Mater. 32, 2002653 (2020).

    Article  Google Scholar 

  16. 16.

    Deng, W. et al. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater. 11, 77 (2019).

    Article  Google Scholar 

  17. 17.

    Baek, E. et al. Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions. Nat. Electron. 3, 398–408 (2020).

    Article  Google Scholar 

  18. 18.

    Ji, D. et al. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 10, 12 (2019).

    Article  Google Scholar 

  19. 19.

    Kim, K. H. et al. Highly photosensitive J-aggregated single-crystalline organic transistors. Adv. Mater. 23, 3095–3099 (2011).

    Article  Google Scholar 

  20. 20.

    Liu, J. et al. Organic-single-crystal vertical field-effect transistors and phototransistors. Adv. Mater. 30, e1803655 (2018).

    Article  Google Scholar 

  21. 21.

    Shen, H. et al. Mimicking sensory adaptation with dielectric engineered organic transistors. Adv. Mater. 31, 1905018 (2019).

    Article  Google Scholar 

  22. 22.

    Koutalos, Y. & Yau, K.-W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 19, 73–81 (1999).

    Article  Google Scholar 

  23. 23.

    Baylor, D. How photons start vision. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).

    Article  Google Scholar 

  24. 24.

    Torre, V., Ashmore, J. F., Lamb, T. D. & Menini, A. Transduction and adaptation in sensory receptor cells. J. Neurosci. 15, 7757–7768 (1995).

    Article  Google Scholar 

  25. 25.

    Iglesias, P. A. Chemoattractant signaling in Dictyostelium: adaptation and amplification. Sci. Signal. 5, pe8 (2012).

    Article  Google Scholar 

  26. 26.

    Artyukhin, A. B., Wu, L. F. & Altschuler, S. J. Only two ways to achieve perfection. Cell 138, 619–621 (2009).

    Article  Google Scholar 

  27. 27.

    Tendler, A., Wolf, B. C., Tiwari, V., Alon, U. & Danon, A. Fold-change response of photosynthesis to step increases of light level. iScience 8, 126–137 (2018).

    Article  Google Scholar 

  28. 28.

    Xu, H. et al. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5, 11850–11855 (2013).

    Article  Google Scholar 

  29. 29.

    Wang, C., Zhang, X. & Hu, W. Organic photodiodes and phototransistors toward infrared detection: materials, devices and applications. Chem. Soc. Rev. 49, 653–670 (2020).

    Article  Google Scholar 

  30. 30.

    Dang, M. T., Hirsch, L. & Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011).

    Article  Google Scholar 

  31. 31.

    Jang, J. et al. Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric. Appl. Phys. Lett. 92, 143306 (2008).

    Article  Google Scholar 

  32. 32.

    Jiang, C. et al. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 363, 719–723 (2019).

    Article  Google Scholar 

  33. 33.

    Un, H.-I. et al. Charge-trapping-induced non-ideal behaviors in organic field-effect transistors. Adv. Mater. 30, 1800017 (2018).

    Article  Google Scholar 

  34. 34.

    Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 192–194 (2005).

    Article  Google Scholar 

  35. 35.

    Wark, B., Fairhall, A. & Rieke, F. Timescales of inference in visual adaptation. Neuron 61, 750–761 (2009).

    Article  Google Scholar 

  36. 36.

    Kohn, A. Visual adaptation: physiology, mechanisms and functional benefits. J. Neurophysiol. 97, 3155–3164 (2007).

    Article  Google Scholar 

  37. 37.

    Rauh, D. et al. Relation of open circuit voltage to charge carrier density in organic bulk heterojunction solar cells. Appl. Phys. Lett. 98, 133301 (2011).

    Article  Google Scholar 

  38. 38.

    Stevens, J. C. & Stevens, S. S. Brightness function: effects of adaptation. J. Opt. Soc. Am. 53, 375–385 (1963).

    Article  Google Scholar 

  39. 39.

    Shlaer, S. The relation between visual acuity and illumination. J. Gen. Physiol. 21, 165–188 (1937).

    Article  Google Scholar 

  40. 40.

    Nelson, R. in Webvision: The Organization of the Retina and Visual System (eds Kolb, H. et al.) 151–200 (Univ. Utah Health Sciences Center, 2007).

  41. 41.

    Masland, R. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  Google Scholar 

  42. 42.

    Aguilar, M. & Stiles, W. S. Saturation of the rod mechanism of the retina at high levels of stimulation. Opt. Acta Int. J. Opt. 1, 59–65 (1954).

    Article  Google Scholar 

  43. 43.

    Barlow, H. B. Temporal and spatial summation in human vision at different background intensities. J. Physiol. 141, 337–350 (1958).

    Article  Google Scholar 

  44. 44.

    Davson, H. Physiology of the Eye (Macmillan, 1990).

Download references


C.-a.D. acknowledges financial support from the National Key Research and Development Program of China (2017YFA0204700 and 2018YF-E0200700), the National Natural Science Foundation (62075224, 62001454 and 22021002), the Strategic Priority Research Program of Chinese Academy of Sciences (XDPB13) and the K.C. Wong Education Foundation (GJTD-2020-02).

Author information




C.-a.D. conceived and led the research. D.Z. supervised the project. Z.H., H.S. and D.Y. proposed the idea. Z.H. and H.S. fabricated the devices, performed electrical measurements and analysed the data. C.a-.D., Z.H., H.S. and D.Y. wrote the main manuscript, with comments from all authors. F.Z. performed KPFM measurements. L.X., W.Z. and J.D. provided comments during the experiments and writing of the manuscript.

Corresponding author

Correspondence to Chong-an Di.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Choongik Kim, Tao Li and Xiujuan Zhang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Note 1 and References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Shen, H., Ye, D. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat Electron 4, 522–529 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing