Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors

Abstract

Lateral-channel dual-gate organic thin-film transistors have been used in pseudo complementary metal–oxide–semiconductor (CMOS) inverters to control switching voltage. However, their relatively long channel lengths, combined with the low charge carrier mobility of organic semiconductors, typically leads to slow inverter operation. Vertical-channel dual-gate organic thin-film transistors are a promising alternative because of their short channel lengths, but the lack of appropriate p- and n-type devices has limited the development of complementary inverter circuits. Here, we show that organic vertical n-channel permeable single- and dual-base transistors, and vertical p-channel permeable base transistors can be used to create integrated complementary inverters and ring oscillators. The vertical dual-base transistors enable switching voltage shift and gain enhancement. The inverters exhibit small switching time constants at 10 MHz, and the seven-stage complementary ring oscillators exhibit short signal propagation delays of 11 ns per stage at a supply voltage of 4 V.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of n- and p-type vertical organic transistors.
Fig. 2: Static transistor characteristics.
Fig. 3: Switching voltage control.
Fig. 4: Static and dynamic inverter characteristics.
Fig. 5: Dynamic performance of integrated seven-stage complementary ring oscillators.

Similar content being viewed by others

Data availability

All the data that support this study are included in this article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Chen, Y. et al. Flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    Article  Google Scholar 

  2. Xu, K., Lu, Y. & Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4, 1800628 (2019).

    Article  Google Scholar 

  3. Khan, H. U. et al. In situ, label-free DNA detection using organic transistor sensors. Adv. Mater. 22, 4452–4456 (2010).

    Article  Google Scholar 

  4. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010).

    Article  Google Scholar 

  5. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018).

    Article  Google Scholar 

  6. MacPherson, M. R. Threshold shift calculations for ion implanted MOS devices. Solid. State Electron. 15, 1319–1326 (1972).

    Article  Google Scholar 

  7. Lüssem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Article  Google Scholar 

  8. Lee, C.-T. & Chen, H.-C. Performance improvement mechanisms of organic thin-film transistors using MoOx-doped pentacene as channel layer. Org. Electron. 12, 1852–1857 (2011).

    Article  Google Scholar 

  9. Panidi, J. et al. Introducing a nonvolatile n-type dopant drastically improves electron transport in polymer and small-molecule organic transistors. Adv. Funct. Mater. 29, 1902784 (2019).

    Article  Google Scholar 

  10. Cui, T. & Liang, G. Dual-gate pentacene organic field-effect transistors based on a nanoassembled SiO2 nanoparticle thin film as the gate dielectric layer. Appl. Phys. Lett. 86, 064102 (2005).

    Article  Google Scholar 

  11. Iba, S. et al. Control of threshold voltage of organic field-effect transistors with double-gate structures. Appl. Phys. Lett. 87, 023509 (2005).

    Article  Google Scholar 

  12. Gelinck, G. H., Van Veenendaal, E. & Coehoorn, R. Dual-gate organic thin-film transistors. Appl. Phys. Lett. 87, 073508 (2005).

    Article  Google Scholar 

  13. Chua, L. L., Friend, R. H. & Ho, P. K. H. Organic double-gate field-effect transistors: logic-AND operation. Appl. Phys. Lett. 87, 253512 (2005).

    Article  Google Scholar 

  14. Morana, M., Bret, G. & Brabec, C. Double-gate organic field-effect transistor. Appl. Phys. Lett. 87, 153511 (2005).

    Article  Google Scholar 

  15. Spijkman, M. et al. Increasing the noise margin in organic circuits using dual gate field-effect transistors. Appl. Phys. Lett. 92, 143304 (2008).

    Article  Google Scholar 

  16. Myny, K. et al. Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J. Solid State Circuits 46, 1223–1230 (2011).

    Article  Google Scholar 

  17. Klauk, H. Will we see gigahertz organic transistors? Adv. Electron. Mater. 4, 1700474 (2018).

    Article  Google Scholar 

  18. Greenman, M., Yoffis, S. & Tessler, N. Complementary inverter from patterned source electrode vertical organic field effect transistors. Appl. Phys. Lett. 108, 043301 (2016).

    Article  Google Scholar 

  19. Kleemann, H., Krechan, K., Fischer, A. & Leo, K. Review of vertical organic transistors. Adv. Funct. Mater. 30, 1907113 (2020).

    Article  Google Scholar 

  20. Dollinger, F. et al. Vertical organic thin-film transistors with an anodized permeable base for very low leakage current. Adv. Mater. 31, 1900917 (2019).

    Article  Google Scholar 

  21. Lim, K. G. et al. Anodization for simplified processing and efficient charge transport in vertical organic field-effect transistors. Adv. Funct. Mater. 30, 2001703 (2020).

    Article  Google Scholar 

  22. Guo, E. et al. High-performance static induction transistors based on small-molecule organic semiconductors. Adv. Mater. Technol. 5, 2000361 (2020).

    Article  Google Scholar 

  23. Lenz, J., del Giudice, F., Geisenhof, F. R., Winterer, F. & Weitz, R. T. Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour. Nat. Nanotechnol. 14, 579–585 (2019).

    Article  Google Scholar 

  24. Perinot, A. & Caironi, M. Accessing MHz operation at 2 V with field-effect transistors based on printed polymers on plastic. Adv. Sci. 6, 1801566 (2019).

    Article  Google Scholar 

  25. Ben-Sasson, A. J. et al. Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 213301 (2009).

    Article  Google Scholar 

  26. Ben-Sasson, A. J. et al. Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149–2152 (2015).

    Article  Google Scholar 

  27. Subedi, K. N., Al-Shadeedi, A. & Lüssem, B. Stability of organic permeable base transistors. Appl. Phys. Lett. 115, 193301 (2019).

    Article  Google Scholar 

  28. Kaschura, F., Fischer, A., Kasemann, D., Leo, K. & Lüssem, B. Controlling morphology: a vertical organic transistor with a self-structured permeable base using the bottom electrode as seed layer. Appl. Phys. Lett. 107, 033301 (2015).

    Article  Google Scholar 

  29. Kheradmand-Boroujeni, B. et al. A pulse-biasing small-signal measurement technique enabling 40-MHz operation of vertical organic transistors. Sci. Rep. 8, 7643 (2018).

    Article  Google Scholar 

  30. Dollinger, F. et al. Electrically stable organic permeable base transistors for display applications. Adv. Electron. Mater. 5, 1900576 (2019).

    Article  Google Scholar 

  31. Lüssem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).

    Article  Google Scholar 

  32. Guo, E. et al. Vertical organic permeable dual-base transistors for logic circuits. Nat. Commun. 11, 4725 (2020).

    Article  Google Scholar 

  33. Klinger, M. P. et al. Organic power electronics: transistor operation in the kA/cm2 regime. Sci. Rep. 7, 4471 (2017).

    Article  Google Scholar 

  34. Dao, T. T. et al. Controllable threshold voltage in organic complementary logic circuits with an electron-trapping polymer and photoactive gate dielectric layer. ACS Appl. Mater. Interfaces 8, 18249–18255 (2016).

    Article  Google Scholar 

  35. Yoo, H., On, S., Lee, S. B., Cho, K. & Kim, J. J. Negative transconductance heterojunction organic transistors and their application to full-swing ternary circuits. Adv. Mater. 31, 1808265 (2019).

    Article  Google Scholar 

  36. Shiwaku, R. et al. Printed organic inverter circuits with ultralow operating voltages. Adv. Electron. Mater. 3, 1600557 (2017).

    Article  Google Scholar 

  37. Borchert, J. W. et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6, eaaz5156 (2020).

    Article  Google Scholar 

  38. Borchert, J. W. et al. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat. Commun. 10, 1119 (2019).

    Article  Google Scholar 

  39. Benwadih, M. et al. Integration of a graphene ink as gate electrode for printed organic complementary thin-film transistors. Org. Electron. 15, 614–621 (2014).

    Article  Google Scholar 

  40. Raiteri, D., Van Lieshout, P., Van Roermund, A. & Cantatore, E. Positive-feedback level shifter logic for large-area electronics. IEEE J. Solid State Circuits 49, 524–535 (2014).

    Article  Google Scholar 

  41. Kitamura, M., Kuzumoto, Y., Aomori, S. & Arakawa, Y. High-frequency organic complementary ring oscillator operating up to 200 kHz. Appl. Phys. Express 4, 051601 (2011).

    Article  Google Scholar 

  42. Baeg, K. J. et al. Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Org. Electron. 14, 1407–1418 (2013).

    Article  Google Scholar 

  43. Ke, T. H. et al. Scaling down of organic complementary logic gates for compact logic on foil. Org. Electron. 15, 1229–1234 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

E.G. and S.X. acknowledge financial support from the China Scholarship Council (nos. 201706890003 and 201706070125). Z.W. acknowledges funding from the Alexander von Humboldt Foundation and Fundamental Research Funds for the Central Universities. K.L. and F.D. gratefully acknowledge support from the German Research Foundation (DFG) under grants LE747/52-2 (SPP FflexCom/Flexartwo) and LE747/62-1. Furthermore, use of the HZDR Ion Beam Center TEM facilities and the funding of TEM Talos by the German Federal Ministry of Education of Research (BMBF; grant no. 03SF0451) in the framework of HEMCP are gratefully acknowledged. We thank H. Tang from Leibniz IFW Dresden for her assistance with optical imaging. We also thank Y. Gao from TU Dresden for her help with ring oscillator measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and K.L. proposed and supervised the project. E.G., Z.W. and H.K. designed the experiment. E.G., S.X., F.D. and S.-J.W. performed the device characterization. R.H. carried out the TEM analysis. E.G., Z.W., H.K. and K.L. analysed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Erjuan Guo, Zhongbin Wu or Hans Kleemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Mario Caironi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, figure captions and discussion, and Tables 1 and 2.

Source data

Source Data Fig. 2

Transfer and output curves of an n-type OPDBT and p-type OPBT, respectively.

Source Data Fig. 3

Static voltage transfer characteristics.

Source Data Fig. 4

Static voltage transfer curves and dynamic performance.

Source Data Fig. 5

Dynamic response of ring oscillators at 6 V, and delay time per stage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, E., Xing, S., Dollinger, F. et al. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat Electron 4, 588–594 (2021). https://doi.org/10.1038/s41928-021-00613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00613-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing