Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coulomb drag in topological wires separated by an air gap

Abstract

Strong electron–electron interactions between adjacent nanoscale wires can lead to one-dimensional Coulomb drag, where current in one wire induces a voltage in the second wire via Coulomb interactions. This effect creates challenges for the development of nanoelectronic devices. Quantum spin Hall (QSH) insulators are a promising platform for the development of low-power electronic devices due to their topological protection of edge states from non-magnetic disorder. However, although Coulomb drag in QSH edges has been considered theoretically, experimental explorations of the effect remain limited. Here, we show that one-dimensional Coulomb drag can be observed between adjacent QSH edges that are separated by an air gap. The pair of one-dimensional helical edge states is created in split H-bar devices in inverted InAs/GaSb quantum wells. Near the Dirac point, negative drag signals dominate at low temperatures and exhibit a non-monotonic temperature dependence, suggesting that distinct drag mechanisms compete and cancel out at higher temperatures. The results suggest that QSH effects could be used to suppress the impact of Coulomb interactions on the performance of future nanocircuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the Coulomb drag set-up.
Fig. 2: Schematics of the topological circuit fabrication processes.
Fig. 3: Drag resistance of helical edge states versus front-gate voltage in the split H-bar device at different temperatures.
Fig. 4: Temperature dependence of Coulomb drag signals in helical edges.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files or from the corresponding author upon reasonable request.

References

  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  Google Scholar 

  2. 2.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  Google Scholar 

  3. 3.

    Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  4. 4.

    Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  Google Scholar 

  5. 5.

    Knez, I. et al. Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 112, 026602 (2014).

    Article  Google Scholar 

  6. 6.

    Du, L.-J., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).

    Article  Google Scholar 

  7. 7.

    Couëdo, F., Irie, H., Suzuki, K., Onomitsu, K. & Muraki, K. Single-edge transport in an InAs/GaSb quantum spin Hall insulator. Phys. Rev. B 94, 035301 (2016).

    Article  Google Scholar 

  8. 8.

    Du, L. et al. Tuning edge states in strained-layer InAs/GaInSb quantum spin Hall insulators. Phys. Rev. Lett. 119, 056803 (2017).

    Article  Google Scholar 

  9. 9.

    Akiho, T. et al. Engineering quantum spin Hall insulators by strained-layer heterostructures. Appl. Phys. Lett. 109, 192105 (2016).

    Article  Google Scholar 

  10. 10.

    Irie, H. et al. Energy gap tuning and gate-controlled topological phase transition in InAs/InxGa1−xSb composite quantum wells. Phys. Rev. Mater. 4, 104201 (2020).

    Article  Google Scholar 

  11. 11.

    Zhang, X.-G. & Pantelides, S. T. Screening in nanowires and nanocontacts: field emission, adhesion force and contact resistance. Nano Lett. 9, 4306–4310 (2009).

    Article  Google Scholar 

  12. 12.

    Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article  Google Scholar 

  13. 13.

    Nazarov, Y. V. & Averin, D. V. Current drag in capacitively coupled Luttinger constrictions. Phys. Rev. Lett. 81, 653–656 (1998).

    Article  Google Scholar 

  14. 14.

    Flensberg, K. Coulomb drag of Luttinger liquids and quantum Hall edges. Phys. Rev. Lett. 81, 184–187 (1998).

    Article  Google Scholar 

  15. 15.

    Klesse, R. & Stern, A. Coulomb drag between quantum wires. Phys. Rev. B 62, 16912–16925 (2000).

    Article  Google Scholar 

  16. 16.

    Ponomarenko, V. V. & Averin, D. V. Coulomb drag between one-dimensional conductors. Phys. Rev. Lett. 85, 4928–4931 (2000).

    Article  Google Scholar 

  17. 17.

    Debray, P. et al. Experimental studies of Coulomb drag between ballistic quantum wires. J. Phys. Condens. Matter 13, 3389 (2001).

    Article  Google Scholar 

  18. 18.

    Yamamoto, M., Stopa, M., Tokura, Y., Hirayama, Y. & Tarucha, S. Coulomb drag between quantum wires: magnetic field effects and negative anomaly. Phys. E 12, 726–729 (2002).

    Article  Google Scholar 

  19. 19.

    Yamamoto, M., Stopa, M., Tokura, Y., Hirayama, Y. & Tarucha, S. Negative Coulomb drag in a one-dimensional wire. Science 313, 204–207 (2006).

    Article  Google Scholar 

  20. 20.

    Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires. Nat. Nano. 6, 793–797 (2011).

    Article  Google Scholar 

  21. 21.

    Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. 1D–1D Coulomb drag signature of a Luttinger liquid. Science 343, 631–634 (2014).

    Article  Google Scholar 

  22. 22.

    Fiete, G. A., Hur, K. L. & Balents, L. Coulomb drag between two spin-incoherent Luttinger liquids. Phys. Rev. B 73, 165104 (2006).

    Article  Google Scholar 

  23. 23.

    Dmitriev, A. P., Gornyi, I. V. & Polyakov, D. G. Coulomb drag between ballistic quantum wires. Phys. Rev. B 86, 245402 (2012).

    Article  Google Scholar 

  24. 24.

    Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Article  Google Scholar 

  25. 25.

    Du, L.-J. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    Article  Google Scholar 

  26. 26.

    Tanaka, Y. & Nagaosa, N. Two interacting helical edge modes in quantum spin Hall systems. Phys. Rev. Lett. 103, 166403 (2009).

    Article  Google Scholar 

  27. 27.

    Zyuzin, V. A. & Fiete, G. A. Coulomb drag between helical edge states. Phys. Rev. B 82, 113305 (2010).

    Article  Google Scholar 

  28. 28.

    Chou, Y.-Z., Levchenko, A. & Foster, M. S. Helical quantum edge gears in 2D topological insulators. Phys. Rev. Lett. 115, 186404 (2015).

    Article  Google Scholar 

  29. 29.

    Kainaris, N., Gornyi, I. V., Levchenko, A. & Polyakov, D. G. Coulomb drag between helical Luttinger liquids. Phys. Rev. B 95, 045150 (2017).

    Article  Google Scholar 

  30. 30.

    Chou, Y.-Z. Localization-driven correlated states of two isolated interacting helical edges. Phys. Rev. B 99, 045125 (2019).

    Article  Google Scholar 

  31. 31.

    Schmidt, T. L., Rachel, S., von Oppen, F. & Glazman, L. I. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett. 108, 156402 (2012).

    Article  Google Scholar 

  32. 32.

    Lezmy, N., Oreg, Y. & Berkooz, M. Single and multiparticle scattering in helical liquid with an impurity. Phys. Rev. B 85, 235304 (2012).

    Article  Google Scholar 

  33. 33.

    Du, L.-J. et al. Emerging many-body effects in semiconductor artificial graphene with low disorder. Nat. Commun. 9, 3299 (2018).

    Article  Google Scholar 

  34. 34.

    Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Article  Google Scholar 

  35. 35.

    Levchenko, A. & Kamenev, A. Coulomb drag in quantum circuits. Phys. Rev. Lett. 101, 216806 (2008).

    Article  Google Scholar 

  36. 36.

    Sánchez, R., López, R., Sánchez, D. & Büttiker, M. Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations. Phys. Rev. Lett. 104, 076801 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. S. Foster for discussions. The work at Peking University was supported by the NSFC (grant no.11921005), the National Key R and D Program of China (grant no. 2019YFA030840) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB28000000). The work at Nanjing University was supported by the Fundamental Research Funds for the Central Universities (grant no. 14380146) and the NSFC (grant no. 12074177). The work at Rice University was supported by the NSF (grant no. DMR-1508644) and Welch Foundation (grant no. C-1682). Y.-Z.C. is supported by the Laboratory for Physical Sciences and by JQI-NSF-PFC (supported by NSF grant PHY-1607611).

Author information

Affiliations

Authors

Contributions

L.D., J. Zheng, J. Zhang and X.W. fabricated the devices and performed the transport experiments. Y.-Z.C. developed the theoretical model. G.S. and A.I. fabricated the QW samples. L.D. and R.-R.D. co-wrote the manuscript with input from the other authors. L.D. and R.-R.D. conceived the project. R.-R.D. provided overall supervision and coordination of the project.

Corresponding authors

Correspondence to Lingjie Du or Rui-Rui Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, L., Zheng, J., Chou, YZ. et al. Coulomb drag in topological wires separated by an air gap. Nat Electron 4, 573–578 (2021). https://doi.org/10.1038/s41928-021-00603-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing