Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bandgap engineering of two-dimensional C3N bilayers


Carbon materials such as graphene are of potential use in the development of electronic devices because of properties such as high mechanical strength and electrical and thermal conductivity. However, technical challenges, including difficulties in generating and modulating bandgaps, have limited the application of such materials. Here we show that the bandgaps of bilayers of two-dimensional C3N can be engineered by controlling the stacking order or applying an electric field. AA′ stacked C3N bilayers are found to have a smaller bandgap (0.30 eV) than AB′ stacked bilayers (0.89 eV), and both bandgaps are lower than that of monolayer C3N (1.23 eV). The larger bandgap reduction observed in AA′ stacked bilayers, compared with AB′ stacked bilayers, is attributed to the greater pz-orbital overlap. By applying an electric field of ~1.4 V nm−1, a bandgap modulation of around 0.6 eV can be achieved in the AB′ structure. We also show that the C3N bilayers can offer controllable on/off ratios, high carrier mobilities and photoelectric detection capabilities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Stacking and bandgap of the C3N bilayer.
Fig. 2: Band structure and partial charge distribution of the C3N bilayers with AA, AA′, AB, AB′ stackings.
Fig. 3: Structure characterization and bandgap measurement of the C3N bilayers with AA′ and AB′ stackings.
Fig. 4: Bandgap engineering of the C3N bilayer induced by external electric fields.

Data availability

The data that support the plots within this manuscript and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. 1.

    Cavin, R. K., Lugli, P. & Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 100, 1720–1749 (2012).

    Article  Google Scholar 

  2. 2.

    Keshavarzi, A. et al. Carbon nanotube field-effect transistors for high-performance digital circuits—transient analysis, parasitics and scalability. IEEE Trans. Electron Devices 53, 2718–2726 (2006).

    Article  Google Scholar 

  3. 3.

    Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007).

    Article  Google Scholar 

  4. 4.

    Zhang, Z. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007).

    Article  Google Scholar 

  5. 5.

    Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    Article  Google Scholar 

  6. 6.

    Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  Google Scholar 

  7. 7.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  Google Scholar 

  8. 8.

    Singh, V. et al. Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011).

    Article  Google Scholar 

  9. 9.

    Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    Article  Google Scholar 

  10. 10.

    Rao, R. et al. Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12, 11756–11784 (2018).

    Article  Google Scholar 

  11. 11.

    Panchakarla, L. S. et al. Synthesis, structure and properties of boron‐ and nitrogen‐doped graphene. Adv. Mater. 21, 4726–4730 (2009).

    Google Scholar 

  12. 12.

    Wang, H., Maiyalagan, T. & Wang, X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization and its potential applications. ACS Catal. 2, 781–794 (2012).

    Article  Google Scholar 

  13. 13.

    Liu, L., Liu, F. & Zhao, J. Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications. Nano Res. 7, 626–657 (2014).

    Article  Google Scholar 

  14. 14.

    Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  Google Scholar 

  15. 15.

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  Google Scholar 

  16. 16.

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    Article  Google Scholar 

  17. 17.

    Li, Y. Y., Chen, M. X., Weinert, M. & Li, L. Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons. Nat. Commun. 5, 4311 (2014).

    Article  Google Scholar 

  18. 18.

    Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    Article  Google Scholar 

  19. 19.

    Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  Google Scholar 

  20. 20.

    Deng, Y., Xie, Y., Zou, K. & Ji, X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144–1173 (2016).

    Article  Google Scholar 

  21. 21.

    Mizuno, S., Fujita, M. & Nakao, K. Electronic states of graphitic heterocompounds of carbon, boron and nitrogen. Synth. Met. 71, 1869–1870 (1995).

    Article  Google Scholar 

  22. 22.

    Yang, S. et al. C3N—a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).

    Article  Google Scholar 

  23. 23.

    Mahmood, J. et al. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc. Natl Acad. Sci. USA 113, 7414–7419 (2016).

    Article  Google Scholar 

  24. 24.

    Xu, J. et al. 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 29, 1702007 (2017).

    Article  Google Scholar 

  25. 25.

    Mortazavi, B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118, 25–34 (2017).

    Article  Google Scholar 

  26. 26.

    Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  27. 27.

    Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  Google Scholar 

  28. 28.

    Jiang, T. et al. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 9, 825–829 (2014).

    Article  Google Scholar 

  29. 29.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  Google Scholar 

  30. 30.

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

    Article  Google Scholar 

  31. 31.

    Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).

    Article  Google Scholar 

  32. 32.

    Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  Google Scholar 

  33. 33.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  Google Scholar 

  34. 34.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  Google Scholar 

  35. 35.

    Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  Google Scholar 

  36. 36.

    Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 9, 4068 (2018).

    Article  Google Scholar 

  37. 37.

    Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  Google Scholar 

  38. 38.

    Yeh, P.-C. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 16, 953–959 (2016).

    Article  Google Scholar 

  39. 39.

    Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys 16, 1093–1096 (2020).

    Article  Google Scholar 

  40. 40.

    Cao, T., Li, Z., Qiu, D. Y. & Louie, S. G. Gate switchable transport and optical anisotropy in 90° twisted bilayer black phosphorus. Nano Lett. 16, 5542–5546 (2016).

    Article  Google Scholar 

  41. 41.

    Deng, B. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).

    Article  Google Scholar 

  42. 42.

    Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

    Article  Google Scholar 

  43. 43.

    Chu, T., Ilatikhameneh, H., Klimeck, G., Rahman, R. & Chen, Z. Electrically tunable bandgaps in bilayer MoS2. Nano Lett. 15, 8000–8007 (2015).

    Article  Google Scholar 

  44. 44.

    Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    Article  Google Scholar 

  45. 45.

    Wang, X. et al. Anisotropic carrier mobility in single-and bi-layer C3N sheets. Phys. B 537, 314–319 (2018).

    Article  Google Scholar 

  46. 46.

    Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  Google Scholar 

  47. 47.

    Wang, X.-P. et al. Electric field analyses on monolayer semiconductors: the example of InSe. Phys. Chem. Chem. Phys. 20, 6945–6950 (2018).

    Article  Google Scholar 

  48. 48.

    Zheng, F., Liu, Z., Wu, J., Duan, W. & Gu, B.-L. Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes. Phys. Rev. B 78, 085423 (2008).

    Article  Google Scholar 

  49. 49.

    Zibouche, N., Philipsen, P., Kuc, A. & Heine, T. Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys. Rev. B 90, 125440 (2014).

    Article  Google Scholar 

  50. 50.

    Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008).

    Article  Google Scholar 

  51. 51.

    Bhattacharya, B., Tomar, S. K., Saxena, A., Lee, J. Y. & Park, J.-K. Ageing and temperature‐dependent behaviour of CdS nanoparticles. Phys. Status Solidi B 246, 832–836 (2009).

    Article  Google Scholar 

  52. 52.

    Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  Google Scholar 

  53. 53.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  54. 54.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  55. 55.

    Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  56. 56.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  Google Scholar 

  57. 57.

    Shishkin, M. & Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007).

    Article  Google Scholar 

  58. 58.

    Shishkin, M. & Kresse, G. Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74, 035101 (2006).

    Article  Google Scholar 

  59. 59.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    MathSciNet  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (grants 21673075, 51725204, 21771132, 51972216, 52041202, 11774368, 11804353, 11704204, 61971035, 61901038 and 61725107), National Key Research and Development Program of China (2019YFA0308000, 2020YFA0308800 and 2020YFA0406104), Innovative Research Group Project of the National Natural Science Foundation of China (51821002), the Australian Research Council through the Discovery Early Career Research Program (DE170101403), Natural Science Foundation of Jiangsu Province (BK20190041), Key-Area Research and Development Program of GuangDong Province (2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the 111 Project. B.I.Y. thanks the Office of Naval Research (N00014−18-1-2182) and the Army Research Office (W911NF-16-1-0255) for support. W.W. was supported by a scholarship from the China Scholarship Council. The computations were performed at ECNU Multifunctional Platform for Innovation (001), Shanghai Supercomputer Center and using computational resources of the NCI through the National Computational Merit Allocation Scheme supported by the Australian Government, the Queensland Cyber Infrastructure Foundation and the University of Queensland Research Computing Centre. We thank D. Sun in East China Normal University for useful discussions.

Author information




Q.Y. and D.J.S. conceived and supervised the theoretical calculations for the work. Z.K., Y.W. and G.D. supervised the experimental part of the project. W.W., W.P., Z.C. and L.W. carried out the theoretical calculations. S.Y., Y.Y. and P.H. synthesized monolayer and bilayer C3N. S.Y., Y.Y. and G.W. characterized the monolayer and bilayer C3N. S.Y., G.W. and L.Z. fabricated C3N devices and analysed experimental data. T.Z., L.L., Q.Z. and Y.W. conducted the scanning tunnelling spectroscopy/scanning tunnelling microscopy measurements. A.B. and B.I.Y. analysed the data and discussed the manuscript. Q.Y., W.W., S.Y. and D.J.S. wrote and revised the manuscript.

Corresponding authors

Correspondence to Guqiao Ding or Zhenhui Kang or Debra J. Searles or Qinghong Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Discussion and Tables 1–4.

Source data

Source Data Fig. 1

Source data for Fig. 1a,c.

Source Data Fig. 2

Source data for Fig. 2a.

Source Data Fig. 3

Source data for Fig. 3g,j,n.

Source Data Fig. 4

Source data for Fig. 4b–d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Yang, S., Wang, G. et al. Bandgap engineering of two-dimensional C3N bilayers. Nat Electron 4, 486–494 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing