Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration of boron arsenide cooling substrates into gallium nitride devices

Abstract

Thermal management is critical in modern electronic systems. Efforts to improve heat dissipation have led to the exploration of novel semiconductor materials with high thermal conductivity, including boron arsenide (BAs) and boron phosphide (BP). However, the integration of such materials into devices and the measurement of their interface energy transport remain unexplored. Here, we show that BAs and BP cooling substrates can be heterogeneously integrated with metals, a wide-bandgap semiconductor (gallium nitride, GaN) and high-electron-mobility transistor devices. GaN-on-BAs structures exhibit a high thermal boundary conductance of 250 MW m−2 K−1, and comparison of device-level hot-spot temperatures with length-dependent scaling (from 100 μm to 100 nm) shows that the power cooling performance of BAs exceeds that of reported diamond devices. Furthermore, operating AlGaN/GaN high-electron-mobility transistors with BAs cooling substrates exhibit substantially lower hot-spot temperatures than diamond and silicon carbide at the same transistor power density, illustrating their potential for use in the thermal management of radiofrequency electronics. We attribute the high thermal management performance of BAs and BP to their unique phonon band structures and interface matching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electronics thermal management using integrated HTC materials as a cooling substrate to improve heat dissipation.
Fig. 2: Heterogeneous interfaces and ultrafast optical spectroscopy measurements of temperature-dependent thermal boundary conductance.
Fig. 3: Ab initio calculation of phonon band structures and atomistic modelling of the phonon spectral contribution to the thermal boundary conductance.
Fig. 4: Device integration of BAs and GaN for high-performance thermal management versus transistor channel length scaling and power density.

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Google Scholar 

  2. 2.

    Ball, P. Computer engineering: feeling the heat. Nature 492, 174–176 (2012).

    Google Scholar 

  3. 3.

    ITRS. International Technology Roadmap for Semiconductors 2.0: Executive Report 79 (Semiconductor Industry Association, 2015).

  4. 4.

    Cui, Y., Li, M. & Hu, Y. Emerging interface materials for electronics thermal management: experiments, modeling and new opportunities. J. Mater. Chem. C 8, 10568 (2020).

    Google Scholar 

  5. 5.

    Bubnova, O. Thermal release. Nat. Nanotechnol. 13, 620 (2018).

    Google Scholar 

  6. 6.

    Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12, 1284 (2021).

    Google Scholar 

  7. 7.

    Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).

    Google Scholar 

  8. 8.

    Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 578, 575–578 (2018).

    Google Scholar 

  9. 9.

    Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 581, 579–581 (2018).

    Google Scholar 

  10. 10.

    Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 585, 582–585 (2018).

    Google Scholar 

  11. 11.

    Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Basic physical properties of cubic boron arsenide. Appl. Phys. Lett. 115, 122103 (2019).

    Google Scholar 

  12. 12.

    Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).

    Google Scholar 

  13. 13.

    Broido, D. A., Lindsay, L. & Reinecke, T. L. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials. Phys. Rev. B 88, 214303 (2013).

    Google Scholar 

  14. 14.

    Wu, H., Fan, H. & Hu, Y. Ab initio determination of ultrahigh thermal conductivity in ternary compounds. Phys. Rev. B 103, L041203 (2021).

    Google Scholar 

  15. 15.

    Fan, H., Wu, H., Lindsay, L. & Hu, Y. Ab initio investigation of single-layer high thermal conductivity boron compounds. Phys. Rev. B 100, 085420 (2019).

    Google Scholar 

  16. 16.

    Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201(R) (2017).

    Google Scholar 

  17. 17.

    Mingo, N. & Broido, D. A. Lattice thermal conductivity crossovers in semiconductor nanowires. Phys. Rev. Lett. 93, 246106 (2004).

    Google Scholar 

  18. 18.

    Ward, A., Broido, D. A., Stewart, D. A. & Deinzer, G. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009).

    Google Scholar 

  19. 19.

    Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).

    Google Scholar 

  20. 20.

    Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

    Google Scholar 

  21. 21.

    Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 1960).

  22. 22.

    Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Google Scholar 

  23. 23.

    Li, M., Kang, J. S. & Hu, Y. Anisotropic thermal boundary resistance across two-dimensional black phosphorous: experiment and atomistic modeling of interfacial energy transport. Adv. Mater. 31, 1901021 (2019).

    Google Scholar 

  24. 24.

    Kittel, C. Introduction to Solid State Physics (Wiley, 1976).

    MATH  Google Scholar 

  25. 25.

    Cho, J. et al. Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 79–85 (2013).

    Google Scholar 

  26. 26.

    Pomeroy, J. W., Bernardoni, M., Dumka, D. C., Fanning, D. M. & Kuball, M. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl. Phys. Lett. 104, 083513 (2014).

    Google Scholar 

  27. 27.

    Liu, D. et al. GaN-on-diamond electronic device reliability: mechanical and thermo-mechanical integrity. Appl. Phys. Lett. 107, 251902 (2015).

    Google Scholar 

  28. 28.

    Li, M., Kang, J. S. & Hu, Y. Anisotropic thermal conductivity measurement using a new asymmetric-beam time-domain thermoreflectance (AB-TDTR) method. Rev. Sci. Instrum. 89, 084901 (2018).

    Google Scholar 

  29. 29.

    Kang, J. S., Wu, H., Li, M. & Hu, Y. Intrinsic low thermal conductivity and phonon renormalization due to strong anharmonicity of single-crystal tin selenide. Nano Lett. 19, 4941–4948 (2019).

    Google Scholar 

  30. 30.

    Stoner, R. J., Maris, H. J., Anthony, T. R. & Banholzer, W. F. Measurements of the Kapitza conductance between diamond and several metals. Phys. Rev. Lett. 68, 1563–1566 (1992).

    Google Scholar 

  31. 31.

    Monachon, C., Weber, L. & Dames, C. Thermal boundary conductance: a materials science perspective. Annu. Rev. Mater. Res. 46, 433–463 (2016).

    Google Scholar 

  32. 32.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  33. 33.

    Stedman, R. & Nilsson, G. Dispersion relations for phonons in aluminum at 80 and 300 °K. Phys. Rev. 145, 492–500 (1966).

    Google Scholar 

  34. 34.

    Sharma, P. K. & Singh, N. Phonon dispersion in noble metals. Phys. Rev. B 4, 4636–4639 (1971).

    Google Scholar 

  35. 35.

    Dutton, D. H., Brockhouse, B. N. & Miller, A. P. Crystal dynamics of platinum by inelastic neutron scattering. Can. J. Phys. 50, 2915–2927 (1972).

    Google Scholar 

  36. 36.

    Aggarwal, K. G. Lattice dynamics of diamond. Proc. Phys. Soc. 91, 381–389 (1967).

    Google Scholar 

  37. 37.

    Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    MathSciNet  Google Scholar 

  38. 38.

    B̈üttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Google Scholar 

  39. 39.

    Snyder, N. S. Heat transport through helium II: Kapitza conductance. Cryogenics 10, 89–95 (1970).

    Google Scholar 

  40. 40.

    Chen, G. Nanoscale Energy Transport and Conversion (Oxford Univ. Press, 2005).

  41. 41.

    Brommer, P. et al. Classical interaction potentials for diverse materials from ab initio data: a review of potfit. Model. Simul. Mater. Sci. Eng. 23, 074002 (2015).

    Google Scholar 

  42. 42.

    Erhart, P. & Albe, K. Analytical potential for atomistic simulations of silicon, carbon and silicon carbide. Phys. Rev. B 71, 035211 (2005).

    Google Scholar 

  43. 43.

    Jacobsen, K. W., Norskov, J. K. & Puska, M. J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 35, 7423–7442 (1987).

    Google Scholar 

  44. 44.

    Delhommelle, J. & Millié, P. Inadequacy of the Lorentz–Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys. 99, 619–625 (2001).

    Google Scholar 

  45. 45.

    Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Google Scholar 

  46. 46.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1997).

    MATH  Google Scholar 

  47. 47.

    Cho, J., Li, Z., Asheghi, M. & Goodson, K. Near-junction thermal management: thermal conduction in gallium nitride composite substrates. Annu. Rev. Heat Transf. 18, 7–45 (2015).

    Google Scholar 

  48. 48.

    Cho, J., Francis, D., Altman, D. H., Asheghi, M. & Goodson, K. E. Phonon conduction in GaN–diamond composite substrates. J. Appl. Phys. 121, 055105 (2017).

    Google Scholar 

  49. 49.

    Zhou, Y. et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 9, 34416–34422 (2017).

    Google Scholar 

  50. 50.

    Yates, L. et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 10, 24302–24309 (2018).

    Google Scholar 

  51. 51.

    Cheng, Z., Mu, F., Yates, L., Suga, T. & Graham, S. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 12, 8376–8384 (2020).

    Google Scholar 

  52. 52.

    Ayers, J. E. Heteroepitaxy of Semiconductors: Theory, Growth and Characterization (CRC Press, 2007).

    Google Scholar 

  53. 53.

    Hu, Y., Kuemmeth, F., Lieber, C. M. & Marcus, C. M. Hole spin relaxation in Ge–Si core–shell nanowire qubits. Nat. Nanotechnol. 7, 47–50 (2012).

    Google Scholar 

  54. 54.

    Péraud, J.-P. M. & Hadjiconstantinou, N. G. An alternative approach to efficient simulation of micro/nanoscale phonon transport. Appl. Phys. Lett. 101, 153114 (2012).

    Google Scholar 

  55. 55.

    Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2, 622–625 (2007).

    Google Scholar 

  56. 56.

    Ke, M. et al. Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics. Nano Res. 13, 1369–1375 (2020).

    Google Scholar 

  57. 57.

    Nguyen, H. D., Kang, J. S., Li, M. & Hu, Y. High-performance field emission based on nanostructured tin selenide for nanoscale vacuum transistors. Nanoscale 11, 3129–3137 (2019).

    Google Scholar 

  58. 58.

    Hu, Y., Xiang, J., Liang, G., Yan, H. & Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2-THz switching speed. Nano Lett. 8, 925–930 (2008).

    Google Scholar 

  59. 59.

    Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Google Scholar 

  60. 60.

    Brovman, Y. M. et al. Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires. J. Appl. Phys. 119, 234304 (2016).

    Google Scholar 

  61. 61.

    Choi, S., Heller, E. R., Dorsey, D., Vetury, R. & Graham, S. Thermometry of AlGaN/GaN HEMTs using multispectral raman features. IEEE Trans. Electron Devices 60, 1898–1904 (2013).

    Google Scholar 

  62. 62.

    Bagnall, K. R., Moore, E. A., Badescu, S. C., Zhang, L. & Wang, E. N. Simultaneous measurement of temperature, stress and electric field in GaN HEMTs with micro-Raman spectroscopy. Rev. Sci. Instrum. 88, 113111 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank H. Albrecht for careful proofreading of this manuscript and P. Chen for helpful discussion. Y.H. acknowledges support from an Alfred P. Sloan Research Fellowship under grant no. FG-2019-11788, a CAREER Award from the National Science Foundation (NSF) under grant no. DMR-1753393, a Young Investigator Award from the United States Air Force Office of Scientific Research under grant no. FA9550-17-1-0149, the Watanabe Excellence in Research Award, the Sustainable LA Grand Challenge and the Anthony and Jeanne Pritzker Family Foundation. This work used computational and storage services associated with the Hoffman 2 Shared Cluster provided by UCLA Institute for Digital Research and Education’s Research Technology Group, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF under grant no. ACI-1548562.

Author information

Affiliations

Authors

Contributions

Y.H. proposed and directed the research. J.S.K., M.L. and H.N. performed the experiments. M.L. and H.W. performed the theory calculations. T.A. helped with the TEM study. J.S.K., M.L., H.W., H.N. and Y.H. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yongjie Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Qian Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, J.S., Li, M., Wu, H. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat Electron 4, 416–423 (2021). https://doi.org/10.1038/s41928-021-00595-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing