Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiofrequency transistors based on aligned carbon nanotube arrays


The development of next-generation wireless communication technology requires integrated radiofrequency devices capable of operating at frequencies greater than 90 GHz. Carbon nanotube field-effect transistors are promising for such applications, but key performance metrics, including operating frequency, at present fall below theoretical predictions. Here we report radiofrequency transistors based on high-purity carbon nanotube arrays that are fabricated using a double-dispersion sorting and binary liquid interface aligning process. The nanotube arrays exhibit a density of approximately 120 nanotubes per micrometre, a maximum carrier mobility of 1,580 cm2 V−1 s−1 and a saturation velocity of up to 3.0 × 107 cm s−1. The resulting field-effect transistors offer high d.c. performance (on-state current of 1.92 mA µm−1 and peak transconductance of 1.40 mS μm−1 at a bias of −0.9 V) for operation at millimetre-wave and terahertz frequencies. Transistors with a 50 nm gate length show current-gain and power-gain cutoff frequencies of up to 540 and 306 GHz, respectively, and radiofrequency amplifiers can exhibit a high power gain (23.2 dB) and inherent linearity (31.2 dBm output power of the third-order intercept point) in the K-band (18 GHz).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Preparation and characterization of aligned CNT arrays.
Fig. 2: Structure and characteristics of CNT-array-based FETs on quartz substrates.
Fig. 3: Electric characteristics of CNT-array-based transistors on high-resistivity Si/SiO2 substrates.
Fig. 4: RF performance characteristics of CNT-array-based high-speed transistors on high-resistivity Si/SiO2 substrates.
Fig. 5: Power gain and linearity characteristics of a CNT-array-based RF amplifier on a silicon wafer.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Rüddenklau, U. et al. mmWave semiconductor industry technologies: status and evolution. ETSI White Paper 15 (2018).

  2. 2.

    Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Google Scholar 

  3. 3.

    Schwierz, F. & Liou, J. J. J. S.-S. E. RF transistors: recent developments and roadmap toward terahertz applications. Solid-State Electron. 51, 1079–1091 (2007).

    Google Scholar 

  4. 4.

    Publications of International Technology Roadmap for Semiconductors (ITRS 2.0, 2015) by Semiconductor Industry Association. (2015).

  5. 5.

    Saleh, R. et al. System-on-chip: reuse and integration. Proc. IEEE 94, 1050–1069 (2006).

    Google Scholar 

  6. 6.

    Burke, P. J. AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electron. 48, 1981–1986 (2004).

    Google Scholar 

  7. 7.

    Guo, J., Hasan, S., Javey, A., Bosman, G. & Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005).

    Google Scholar 

  8. 8.

    Koswatta, S. O., Valdes-Garcia, A., Steiner, M. B., Lin, Y.-M. & Avouris, P. Ultimate RF performance potential of carbon electronics. IEEE Trans. Microw. Theory Techn. 59, 2739–2750 (2011).

    Google Scholar 

  9. 9.

    Zhong, D., Zhang, Z. & Peng, L.-M. Carbon nanotube radio-frequency electronics. Nanotechnology 28, 212001 (2017).

    Google Scholar 

  10. 10.

    Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 4, 811–819 (2009).

    Google Scholar 

  11. 11.

    Baumgardner, J. E. et al. Inherent linearity in carbon nanotube field-effect transistors. Appl. Phys. Lett. 91, 052107 (2007).

    Google Scholar 

  12. 12.

    Wang, C. et al. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 5, 4169–4176 (2011).

    Google Scholar 

  13. 13.

    Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).

    Google Scholar 

  14. 14.

    Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    Google Scholar 

  15. 15.

    Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Google Scholar 

  16. 16.

    Mothes, S., Claus, M. & Schröter, M. Toward linearity in Schottky barrier CNTFETs. IEEE Trans. Nanotechnol. 14, 372–378 (2015).

    Google Scholar 

  17. 17.

    Maas, S. Linearity and dynamic range of carbon nanotube field-effect transistors. 2017 IEEE MTT-S International Microwave Symposium (IMS), 87–90 (2017).

  18. 18.

    Peng, L.-M., Zhang, Z. & Qiu, C. Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019).

    Google Scholar 

  19. 19.

    Zhong, D. et al. Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Appl. Mater. Interfaces 11, 42496–42503 (2019).

    Google Scholar 

  20. 20.

    Rutherglen, C. et al. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nature. Nat. Electron. 2, 530–539 (2019).

    Google Scholar 

  21. 21.

    Zhong, D. et al. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1, 40–45 (2018).

    Google Scholar 

  22. 22.

    Kocabas, C. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 9, 1937–1943 (2009).

    Google Scholar 

  23. 23.

    Che, Y., Lin, Y.-C., Kim, P. & Zhou, C. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS nano 7, 4343–4350 (2013).

    Google Scholar 

  24. 24.

    Cao, Y. et al. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 10, 6782–6790 (2016).

    Google Scholar 

  25. 25.

    Joo, Y., Brady, G. J., Arnold, M. S. & Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 30, 3460–3466 (2014).

    Google Scholar 

  26. 26.

    Marsh, P. F. et al. Solving the linearity and power conundrum: carbon nanotube RF amplifiers. Microw. J. 62, 22–32 (2019).

    Google Scholar 

  27. 27.

    Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 8, 180–186 (2013).

    Google Scholar 

  28. 28.

    Franklin, A. D. Electronics: the road to carbon nanotube transistors. Nature 498, 443–444 (2013).

    Google Scholar 

  29. 29.

    Ding, J. et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 6, 2328–2339 (2014).

    Google Scholar 

  30. 30.

    Gomulya, W. et al. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 25, 2948–2956 (2013).

    Google Scholar 

  31. 31.

    Gu, J. et al. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 12, 4993–4999 (2016).

    Google Scholar 

  32. 32.

    Shastry, T. A. et al. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small 9, 45–51 (2013).

    Google Scholar 

  33. 33.

    Hong, S. W., Banks, T. & Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 22, 1826–1830 (2010).

    Google Scholar 

  34. 34.

    Si, J. et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors. ACS Nano 12, 627–634 (2018).

    Google Scholar 

  35. 35.

    Brady, G. J. et al. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8, 11614–11621 (2014).

    Google Scholar 

  36. 36.

    Shekhar, S., Stokes, P. & Khondaker, S. I. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5, 1739–1746 (2011).

    Google Scholar 

  37. 37.

    Ma, Z. et al. Improving the Performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating. ACS Appl. Mater. Interfaces 11, 11736–11742 (2019).

    Google Scholar 

  38. 38.

    Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Google Scholar 

  39. 39.

    Yu, C. et al. Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates. Appl. Phys. Lett. 108, 013102 (2016).

    Google Scholar 

  40. 40.

    Wu, Y. et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl. Mater. Interfaces 8, 25645–25649 (2016).

    Google Scholar 

  41. 41.

    Yu, C. et al. Improvement of the frequency characteristics of graphene field-effect transistors on SiC substrate. IEEE Electron Device Lett. 38, 1339–1342 (2017).

    Google Scholar 

  42. 42.

    Brady, G. J. et al. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2, e1601240 (2016).

    Google Scholar 

  43. 43.

    Xu, L., Qiu, C., Zhao, C., Zhang, Z. & Peng, L.-M. Insight Into ballisticity of room-temperature carrier transport in carbon nanotube field-effect transistors. IEEE Trans. Electron Devices 66, 3535–3540 (2019).

    Google Scholar 

  44. 44.

    Lee, C.-S., Pop, E., Franklin, A. D., Haensch, W. & Wong, H.-S. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—part I: intrinsic elements. IEEE Trans. Electron Devices 62, 3061–3069 (2015).

    Google Scholar 

  45. 45.

    Shulaker, M. M. et al. High-performance carbon nanotube field-effect transistors. 2014 IEEE International Electron Devices Meeting 33.6.1–33.6.4 (2014).

  46. 46.

    Tyagi, S. et al. A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects. International Electron Devices Meeting 2000. Technical Digest 567–570 (2000).

  47. 47.

    Yang, S. et al. A high performance 180 nm generation logic technology. International Electron Devices Meeting 1998. Technical Digest 197–200 (1998).

  48. 48.

    Bohr, M. et al. A high performance 0.25 /spl mu/m logic technology optimized for 1.8 V operation. International Electron Devices Meeting. Technical Digest 847–850 (1996).

  49. 49.

    Bohr, M. et al. A high performance 0.35 /spl mu/m logic technology for 3.3 V and 2.5 V operation. Proceedings of 1994 IEEE International Electron Devices Meeting 273–276 (1994).

  50. 50.

    Gummel, H. K. On the definition of the cutoff frequency fT. Proc. IEEE 57, 2159 (1969).

    Google Scholar 

  51. 51.

    Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).

    Google Scholar 

  52. 52.

    Steiner, M. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123 (2012).

    Google Scholar 

  53. 53.

    Zota, C., Lindelöw, F., Wernersson, L.-E. & Lind, E. High-frequency InGaAs tri-gate MOSFETs with fmax of 400 GHz. Electron. Lett. 52, 1869–1871 (2016).

    Google Scholar 

  54. 54.

    Lee, S. et al. Record RF performance of 45-nm SOI CMOS technology. IEEE International Electron Devices Meeting 255–258 (2007).

  55. 55.

    Lee, S. et al. SOI CMOS technology with 360GHz fT NFET, 260GHz fT PFET, and record circuit performance for millimeter-wave digital and analog system-on-chip applications. IEEE Symposium on VLSI Technology 54–55 (2007).

  56. 56.

    Siegel, P. H. Terahertz technology. IEEE Trans. Microw. Theory Techn. 50, 910–928 (2002).

    Google Scholar 

  57. 57.

    Liou, J. J. Modern Microwave Transistors: Theory, Design, and Applications (J. Wiley, 2003).

  58. 58.

    RF Gain Block Amplifier (Product No. TRF37C73) (Texas Instruments, 2014).

  59. 59.

    InGaP Broadband Amplifier (Product No. MMG38151) (NXP, 2014).

  60. 60.

    RF/IF Gain Block Amplifier (Product No. ADL5610) (ADI, 2013).

  61. 61.

    Linten, D. et al. A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS. IEEE J. Solid-State Circuits 40, 1434–1442 (2005).

    Google Scholar 

  62. 62.

    Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Google Scholar 

  63. 63.

    Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010).

    Google Scholar 

Download references


We thank C. Jin (Zhejiang University) and S. Ding (Xiangtan University) for TEM technique support, and H. Liu and B. Sun (Institute of Microelectronics of the Chinese Academy of Sciences) for S-parameter, single-tone and two-tone measurement support. This work is supported by the National Key Research & Development Program (grant no. 2016YFA0201901), the National Science Foundation of China (grant nos. 61888102 and 61671020) and the Beijing Municipal Science and Technology Commission (grant no. Z181100004418011).

Author information




Z.Z. and L.-M.P. proposed and supervised the project. H.S. and D.Z. performed device fabrication and d.c. measurements. D.Z. and H.S. designed and optimized the three-dimensional geometry of G/S/D electrodes and gate dielectric thickness. D.Z. and H.S. designed the multi-finger RF device structure. J.H. and H.W. produced the aligned CNT arrays. H.S., L.L., D.Z. and J.H. characterized the CNT materials. H.S. and L.L. performed the polarized Raman spectroscopy characterization. L.X. performed the mobility and saturation velocity simulations using a virtual source model. D.Z. and H.S. performed the small-signal model simulations. H.S., D.Z., P.S. and L.F. performed the S-parameter measurements. H.S., D.Z., L.D. and J.Z. performed the single-tone and two-tone tests. H.S., L.D., D.Z., Z.Z. and L.-M.P. analysed the data. H.S., L.D., Z.Z. and L.-M.P. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhiyong Zhang or Lian-Mao Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Qingwen Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Ding, L., Zhong, D. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat Electron 4, 405–415 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing