Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-power electronic technologies for harsh radiation environments

Abstract

Electronic technologies that can operate in harsh radiation environments are important in space, nuclear and avionic applications. However, radiation-hardened (rad-hard) integrated circuits often require additional processing and more complex configurations than conventional systems. Here we review the development of low-power, rad-hard electronics, examining the underlying phenomena of radiation-induced electronic failure and the design methodologies available with conventional complementary metal–oxide–semiconductor (CMOS) technologies to mitigate the problem. We also explore the potential use and applications of various emerging memory technologies in rad-hard electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energetic radiation environment.
Fig. 2: The routes of radiation damage in electronics.
Fig. 3: Radiation hardening by design.
Fig. 4: Radiation effects in advanced CMOS devices.
Fig. 5: Radiation effects in memory technologies.
Fig. 6: Prospective rad-had applications of emerging memory technologies.

Similar content being viewed by others

References

  1. Evans, D. E., Pitts, D. E. & Kraus, G. L. Venus and Mars Nominal Natural Environment for Advanced Manned Planetary Mission Programs Techincal Report NASA SP-3016 (NASA, 1965).

  2. Bagenal, F. et al. Plasma conditions at Europa’s orbit. Icarus 261, 1–13 (2015).

    Article  Google Scholar 

  3. Cannon, P. Extreme Space Weather: Impacts on Engineered Systems and Infrastructures (Royal Academy of Engineering, 2013); https://www.raeng.org.uk/publications/reports/space-weather-full-report

  4. Bourdarie, S., Friedel, R. H. W., Fennell, J., Kanekal, S. & Cayton, T. E. Radiation belt representation of the energetic electron environment: model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data. Space Weather 3, S04S01 (2005).

    Article  Google Scholar 

  5. Morley, S. K. et al. Energetic particle data from the global positioning system constellation. Space Weather 15, 283–289 (2017).

    Article  Google Scholar 

  6. Pettegrew, R., Easton, J., Struk, P. & Anderson, E. In-flight manual electronics repair for deep-space missions. In 2007 IEEE Aerospace Conference 1–16 (IEEE, 2007); https://doi.org/10.1109/AERO.2007.35272

  7. Michalak, S. E. et al. Assessment of the impact of cosmic-ray-induced neutrons on hardware in the Roadrunner supercomputer. IEEE Trans. Device Mater. Reliab. 12, 445–454 (2012).

    Article  Google Scholar 

  8. Nidhin, T., Bhattacharyya, A., Behera, R., Jayanthi, T. & Velusamy, K. Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants. Nucl. Eng. Technol. 49, 1589–1599 (2017).

    Article  Google Scholar 

  9. Brugger, M. Radiation damage to electronics at the LHC. In IPAC 2012—International Particle Accelerator Conference 2012 3734–3736 (IEEE, 2012).

  10. International Technology Roadmap for Semiconductors 2.0: Executive Report Technical Report (ITRS, 2015).

  11. Baumann, R. & Kruckmeyer, K. Radiation Handbook for Electronics (Texas Instruments, 2019).

  12. Chatzikyriakou, E., Morgan, K. & de Groot, C. H. K. Total ionizing dose hardened and mitigation strategies in deep submicrometer CMOS and beyond. IEEE Trans. Electron Devices 65, 808–819 (2018).

    Article  Google Scholar 

  13. Schwank, J. R. et al. Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55, 1833–1853 (2008).

    Article  Google Scholar 

  14. Khanna, V. K. Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (IOP, 2017); https://iopscience.iop.org/book/978-0-7503-1155-7

  15. Srour, J. R. & Palko, J. W. Displacement damage effects in irradiated semiconductor devices. IEEE Trans. Nucl. Sci. 60, 1740–1766 (2013).

    Article  Google Scholar 

  16. Monteiro, W. A. (ed.) Radiation Effects in Materials (InTech, 2016); http://www.intechopen.com/books/radiation-effects-in-materials

  17. Raphael, R. N. S. et al. Overview about radiation-matter interaction mechanisms and mitigation techniques. In Proc. 3rd Brazilian Technology Symposium (eds Iano, Y. et al.) Vol. 1, 223–238 (Springer, 2019); https://doi.org/10.1007/978-3-319-93112-8_23

  18. Lacoe, R. C. Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Trans. Nucl. Sci. 55, 1903–1925 (2008).

    Article  Google Scholar 

  19. Faccio, F., Michelis, S., Cornale, D., Paccagnella, A. & Gerardin, S. Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs. IEEE Trans. Nucl. Sci. 62, 2933–2940 (2015).

    Article  Google Scholar 

  20. Gambles, J. W., Maki, G. & Whitaker, S. Radiation hardening by design. Int. J. Electron. 95, 11–26 (2008).

    Article  Google Scholar 

  21. Holman, W. Radiation-tolerant design for high performance mixed-signal circuits. Int. J. High Speed Electron. Syst. 14, 353–366 (2004).

    Article  Google Scholar 

  22. Faccio, F. et al. Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65-nm MOSFETs irradiated to ultrahigh doses. IEEE Trans. Nucl. Sci. 65, 164–174 (2017).

    Article  Google Scholar 

  23. Faccio, F. & Cervelli, G. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Trans. Nucl. Sci. 52, 2413–2420 (2005).

    Article  Google Scholar 

  24. Baoping, H., Zhibin, Y., Zujun, W. & Shaoyan, H. Irradiation and anneal response of shallow trench isolation oxides in 0.18 μm CMOS technology. Sci. J. Microelectron. 4, 5 (2014).

    Google Scholar 

  25. Gonella, L. et al. Total ionizing dose effects in 130-nm commercial CMOS technologies for HEP experiments. Nucl. Instrum. Methods Phys. Res. A 582, 750–754 (2007).

    Article  Google Scholar 

  26. Bucher, M. et al. Total ionizing dose effects on analog performance of 65 nm bulk CMOS with enclosed-gate and standard layout. In 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS) 166–170 (IEEE, 2018).

  27. Giraldo, A., Paccagnella, A. & Minzoni, A. Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout. Solid State Electron. 44, 981–989 (2000).

    Article  Google Scholar 

  28. Narasimham, B., Gambles, J. W., Shuler, R. L., Bhuva, B. L. & Massengill, L. W. Quantifying the effect of guard rings and guard drains in mitigating charge collection and charge spread. IEEE Trans. Nucl. Sci. 55, 3456–3460 (2008).

    Article  Google Scholar 

  29. Chen, R. et al. Single-event multiple transients in conventional and guard-ring hardened inverter chains under pulsed laser and heavy-ion irradiation. IEEE Trans. Nucl. Sci. 64, 2511–2518 (2017).

    Article  Google Scholar 

  30. Ruano, O., Reviriego, P. & Maestro, J. Automatic insertion of selective TMR for SEU mitigation. In 2008 European Conference on Radiation and Its Effects on Components and Systems 284–287 (IEEE, 2008).

  31. Hasanbegović, A. & Aunet, S. Heavy ion characterization of temporal-, dual- and triple redundant flip-flops across a wide supply voltage range in a 65 nm bulk CMOS process. IEEE Trans. Nucl. Sci. 63, 2962–2970 (2016).

    Article  Google Scholar 

  32. Bhuva, B. et al. Multi-cell soft errors at advanced technology nodes. IEEE Trans. Nucl. Sci. 62, 2585–2591 (2015).

    Article  Google Scholar 

  33. Toro, D. G., Arzel, M., Seguin, F. & Jézéquel, M. Soft error detection and correction technique for radiation hardening based on C-element and BICS. IEEE Trans. Circuits Syst. II 61, 952–956 (2014).

    Article  Google Scholar 

  34. Schmidt, R., García-Ortiz, A. & Fey, G. Temporal redundancy latch-based architecture for soft error mitigation. In 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS) 240–243 (IEEE, 2017).

  35. Calin, T., Nicolaidis, M. & Velazco, R. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci. 43, 2874–2878 (1996).

    Article  Google Scholar 

  36. Zanchi, A., Buchner, S., Hafer, C., Hisano, S. & Kerwin, D. B. Investigation and mitigation of analog SET on a bandgap reference in triple-well CMOS using pulsed laser techniques. IEEE Trans. Nucl. Sci. 58, 2570–2577 (2011).

    Article  Google Scholar 

  37. Uemura, T., Tanabe, R., Tosaka, Y. & Satoh, S. Using low pass filters in mitigation techniques against single-event transients in 45nm technology LSIs. In 2008 14th IEEE International On-Line Testing Symposium 117–122 (IEEE, 2008).

  38. Kelly, A. T. et al. Differential analog layout for improved ASET tolerance. IEEE Trans. Nucl. Sci. 54, 2053–2059 (2007).

    Article  Google Scholar 

  39. Oh, N., Shirvani, P. P. & McCluskey, E. J. Control-flow checking by software signatures. IEEE Trans. Reliab. 51, 111–122 (2002).

    Article  Google Scholar 

  40. Zhang, Y. et al. Design and verification of SRAM self-detection repair based on ECC and BISR circuit. In 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA) 1–5 (IEEE, 2019).

  41. Mavis, D. et al. Multiple bit upsets and error mitigation in ultra-deep submicron SRAMS. IEEE Trans. Nucl. Sci. 55, 3288–3294 (2008).

    Article  Google Scholar 

  42. Gasiot, G., Giot, D. & Roche, P. Multiple cell upsets as the key contribution to the total SER of 65 nm CMOS SRAMs and its dependence on well engineering. IEEE Trans. Nucl. Sci. 54, 2468–2473 (2007).

    Article  Google Scholar 

  43. Rezgui, S. et al. Complex upset mitigation applied to a re-configurable embedded processor. IEEE Trans. Nucl. Sci. 52, 2468–2474 (2005).

    Article  Google Scholar 

  44. Hughes, H. et al. Total ionizing dose radiation effects on 14 nm FinFET and SOI UTBB technologies. In 2015 IEEE Radiation Effects Data Workshop (REDW) 1–6 (IEEE, 2015).

  45. Simoen, E. et al. Radiation effects in advanced multiple gate and silicon-on-insulator transistors. IEEE Trans. Nucl. Sci. 60, 1970–1991 (2013).

    Article  Google Scholar 

  46. Put, S. et al. Influence of back-gate bias and process conditions on the gamma degradation of the transconductance of MuGFETs. IEEE Trans. Nucl. Sci. 57, 1771–1776 (2010).

    Article  Google Scholar 

  47. Liu, R. et al. Single event transient and TID study in 28 nm UTBB FDSOI technology. IEEE Trans. Nucl. Sci. 64, 113–118 (2016).

    Article  Google Scholar 

  48. Gaillardin, M. et al. Impact of SOI substrate on the radiation response of ultrathin transistors down to the 20 nm node. IEEE Trans. Nucl. Sci. 60, 2583–2589 (2013).

    Article  Google Scholar 

  49. Gaillardin, M. et al. Total ionizing dose effects mitigation strategy for nanoscaled FDSOI technologies. IEEE Trans. Nucl. Sci. 61, 3023–3029 (2014).

    Article  Google Scholar 

  50. King, M. P. et al. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance. IEEE Trans. Nucl. Sci. 64, 285–292 (2016).

    Article  Google Scholar 

  51. Nsengiyumva, P. et al. A comparison of the SEU response of planar and FinFET D flip-flops at advanced technology nodes. IEEE Trans. Nucl. Sci. 63, 266–272 (2016).

    Article  Google Scholar 

  52. Seifert, N. et al. Soft error susceptibilities of 22 nm tri-gate devices. IEEE Trans. Nucl. Sci. 59, 2666–2673 (2012).

    Article  Google Scholar 

  53. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  54. Guertin, S. M., Yang-Scharlotta, J., Blaisdell-Pijuan, P. & Some, R. Options for radiation tolerant high-performance memory. In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS) 1–7 (IEEE, 2017).

  55. Raine, M., Gaillardin, M., Lagutere, T., Duhamel, O. & Paillet, P. Estimation of the single-event upset sensitivity of advanced SOI SRAMs. IEEE Trans. Nucl. Sci. 65, 339–345 (2018).

    Article  Google Scholar 

  56. Shiyanovskii, Y., Wolff, F. & Papachristou, C. SRAM cell design protected from SEU upsets. In 2008 14th IEEE International On-Line Testing Symposium 169–170 (IEEE, 2008).

  57. Geppert, L. A static RAM says goodbye to data errors [radiation induced soft errors]. IEEE Spectr. 41, 16–17 (2004).

    Google Scholar 

  58. Roche, P., Jacquet, F., Caillat, C. & Schoellkopf, J.-P. An alpha immune and ultra low neutron SER high density SRAM. In Proc. 2004 IEEE International Reliability Physics Symposium 671–672 (IEEE, 2004).

  59. Diehl, S., Ochoa, A., Dressendorfer, P., Koga, R. & Kolasinski, W. Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs. IEEE Trans. Nucl. Sci. 29, 2032–2039 (1982).

    Article  Google Scholar 

  60. Takai, M. et al. Soft error susceptibility and immune structures in dynamic random access memories (DRAMs) investigated by nuclear microprobes. IEEE Trans. Nucl. Sci. 43, 696–704 (1996).

    Article  Google Scholar 

  61. Bougerol, A. et al. Use of laser to explain heavy ion induced SEFIs in SDRAMs. IEEE Trans. Nucl. Sci. 57, 272–278 (2010).

    Article  Google Scholar 

  62. Borucki, L., Schindlbeck, G. & Slayman, C. Impact of DRAM process technology on neutron-induced soft errors. In 2007 IEEE International Integrated Reliability Workshop Final Report 143–146 (IEEE, 2007).

  63. Chen, D. et al. Heavy ion and proton-induced single event upset characteristics of a 3-D NAND flash memory. IEEE Trans. Nucl. Sci. 65, 19–26 (2018).

    Article  Google Scholar 

  64. Zhao, C., Zhao, C. Z., Taylor, S. & Chalker, P. R. Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm. Materials 7, 5117–5145 (2014).

    Article  Google Scholar 

  65. Bagatin, M. et al. Effects of heavy-ion irradiation on vertical 3-D NAND flash memories. IEEE Trans. Nucl. Sci. 65, 318–325 (2018).

    Article  Google Scholar 

  66. Oldham, T. R. et al. SEE and TID characterization of an advanced commercial 2Gbit NAND flash nonvolatile memory. IEEE Trans. Nucl. Sci. 53, 3217–3222 (2006).

    Article  Google Scholar 

  67. Baldi, L., Bez, R. & Sandhu, G. Emerging memories. Solid State Electron. 102, 2–11 (2014).

    Article  Google Scholar 

  68. Lu, J. et al. Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications. J. Mater. Res. 30, 1430–1439 (2015).

    Article  Google Scholar 

  69. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  70. Hirose, K., Kobayashi, D., Ito, T. & Endoh, T. Memory reliability of spintronic materials and devices for disaster-resilient computing against radiation-induced bit flips on the ground. Jpn. J. Appl. Phys. 56, 0802A5 (2017).

    Article  Google Scholar 

  71. Stathopoulos, S. et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 17532 (2017).

    Article  Google Scholar 

  72. Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    Article  Google Scholar 

  73. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).

    Article  Google Scholar 

  74. Zuloaga, S., Liu, R., Chen, P.-Y. & Yu, S. Scaling 2-layer RRAM cross-point array towards 10 nm node: a device-circuit co-design. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 193–196 (IEEE, 2015); https://doi.org/10.1109/ISCAS.2015.7168603

  75. Zhang, Z., Wu, Y., Wong, H.-S. P. & Wong, S. S. Nanometer-scale HfOx RRAM. IEEE Electron Device Lett. 34, 1005–1007 (2013).

    Article  Google Scholar 

  76. Khiat, A., Ayliffe, P. & Prodromakis, T. High density crossbar arrays with sub-15 nm single cells via liftoff process only. Sci. Rep. 6, 32614 (2016).

    Article  Google Scholar 

  77. Zhang, L. et al. Total ionizing dose (TID) effects on TaOx-based resistance change memory. IEEE Trans. Electron Devices 58, 2800–2804 (2011).

    Article  Google Scholar 

  78. Liu, R., Mahalanabis, D., Barnaby, H. J. & Yu, S. Investigation of single-bit and multiple-bit upsets in oxide RRAM-based 1T1R and crossbar memory arrays. IEEE Trans. Nucl. Sci. 62, 2294–2301 (2015).

    Article  Google Scholar 

  79. Ye, Z., Liu, R., Taggart, J. L., Barnaby, H. J. & Yu, S. Evaluation of radiation effects in RRAM-based neuromorphic computing system for inference. IEEE Trans. Nucl. Sci. 66, 97–103 (2019).

    Article  Google Scholar 

  80. DeIonno, E., Looper, M. D., Osborn, J. V., Barnaby, H. J. & Tong, W. M. Radiation effects studies on thin film TiO2 memristor devices. In 2013 IEEE Aerospace Conference 1–8 (IEEE, 2013); https://doi.org/10.1109/AERO.2013.6497378

  81. Agashe, K. et al. Effect of gamma irradiation on resistive switching of Al/TiO2/n+Si ReRAM. Nucl. Instrum. Methods Phys. Res. B 403, 38–44 (2017).

    Article  Google Scholar 

  82. Dandamudi, P., Kozicki, M. N., Barnaby, H. J., Gonzalez-Velo, Y. & Holbert, K. E. Total ionizing dose tolerance of Ag-Ge40S60 based programmable metallization cells. IEEE Trans. Nucl. Sci. 61, 1726–1731 (2014).

    Article  Google Scholar 

  83. Shaneyfelt, M. et al. Hardness variability in commercial technologies. IEEE Trans. Nucl. Sci. 41, 2536–2543 (1994).

    Article  Google Scholar 

  84. Fang, R. et al. Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory. Appl. Phys. Lett. 104, 183507 (2014).

    Article  Google Scholar 

  85. Hughart, D. R. et al. Radiation-induced resistance changes in TaOx and TiO2 memristors. In 2014 IEEE Aerospace Conference 1–11 (IEEE, 2014); https://doi.org/10.1109/AERO.2014.6836465

  86. Gonzalez-Velo, Y., Barnaby, H. J. & Kozicki, M. N. Review of radiation effects on ReRAM devices and technology. Semicond. Sci. Technol. 32, 083002 (2017).

    Article  Google Scholar 

  87. Barnaby, H. J. et al. Impact of alpha particles on the electrical characteristics of TiO2 memristors. IEEE Trans. Nucl. Sci. 58, 2838–2844 (2011).

    Article  Google Scholar 

  88. Yuan, F. et al. Total ionizing dose (TID) effects of γ ray radiation on switching behaviors of Ag/AlOx/Pt RRAM device. Nanoscale Res. Lett. 9, 452 (2014).

    Article  Google Scholar 

  89. Wang, J. et al. A radiation-hardening Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor for harsh electronics. Appl. Phys. Lett. 113, 122907 (2018).

    Article  Google Scholar 

  90. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article  Google Scholar 

  91. Prinzie, J. et al. An SRAM-based radiation monitor with dynamic voltage control in 0.18-μm CMOS technology. IEEE Trans. Nucl. Sci. 66, 282–289 (2018).

    Article  Google Scholar 

  92. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  93. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).

    Article  Google Scholar 

  94. Tzouvadaki, I. et al. Label-free ultrasensitive memristive aptasensor. Nano Lett. 16, 4472–4476 (2016).

    Article  Google Scholar 

  95. Vidiš, M. et al. Gasistor: a memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 115, 093504 (2019).

    Article  Google Scholar 

  96. Nguyen, T.-N. & Shin, D. Statistical memristor-based temperature sensors without analog-to-digital conversion. In 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA) 99–104 (IEEE, 2018); https://doi.org/10.1109/NVMSA.2018.00024

  97. Zhang, C. et al. Bioinspired artificial sensory nerve based on Nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019).

    Article  Google Scholar 

  98. Bera, A. et al. A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23, 4977–4984 (2013).

    Article  Google Scholar 

  99. Soni, M. & Dahiya, R. Soft eSkin: distributed touch sensing with harmonized energy and computing. Phil. Trans. R. Soc. A 378, 20190156 (2020).

    Article  Google Scholar 

  100. Gao, Y., Yu, L., Yeo, J. C. & Lim, C. T. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32, 1902133 (2020).

    Article  Google Scholar 

  101. Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

    Article  Google Scholar 

  102. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article  Google Scholar 

  103. Jeong, Y. J., Lee, J., Moon, J., Shin, J. H. & Lu, W. D. K-means data clustering with memristor networks. Nano Lett. 18, 4447–4453 (2018).

    Article  Google Scholar 

  104. Berco, D. & Shenp Ang, D. Recent progress in synaptic devices paving the way toward an artificial cognia retina for bionic and machine vision. Adv. Intell. Syst. 1, 1900003 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of EPSRC Programme Grant FORTE (EP/R024642/1), H2020-FETPROACT-2018-01 SYNCH, FWO (12P5319N), EU Horizon 2020 - RADSAGA (721624) and the RAEng Chair in Emerging Technologies (CiET1819/2/93).

Author information

Authors and Affiliations

Authors

Contributions

J.P., F.M.S., P.L. and T.P. conceived of this Review. J.P. and F.M.S. performed the literature analysis. J.P. and F.M.S. wrote the Review with input from all authors. All authors discussed and contributed to the final manuscript. T.P. took the lead on the structure of the Review and figures.

Corresponding authors

Correspondence to Paul Leroux or Themis Prodromakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Jin-Woo Ha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinzie, J., Simanjuntak, F.M., Leroux, P. et al. Low-power electronic technologies for harsh radiation environments. Nat Electron 4, 243–253 (2021). https://doi.org/10.1038/s41928-021-00562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00562-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing