Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large transport gap modulation in graphene via electric-field-controlled reversible hydrogenation

Abstract

Graphene is of interest in the development of next-generation electronics due to its high electron mobility, flexibility and stability. However, graphene transistors have poor on/off current ratios because of the absence of a bandgap. One approach to introduce an energy gap is to use a hydrogenation reaction, which changes graphene into insulating graphane with sp3 bonding. Here we show that an electric field can be used to control the conductor-to-insulator transitions in microscale graphene via reversible electrochemical hydrogenation in an organic liquid electrolyte containing dissociative hydrogen ions. The fully hydrogenated graphene exhibits a lower sheet resistance limit of 200 GΩ sq−1, resulting in graphene field-effect transistors with on/off current ratios of 108 at room temperature. The devices also exhibit high endurance, with up to 1 million switching cycles. Similar insulating behaviours are also observed in bilayer graphene, while trilayer graphene remains highly conductive after hydrogenation. Changes in the graphene lattice, and the transformation from sp2 to sp3 hybridization, are confirmed by in situ Raman spectroscopy, supported by first-principles calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electric-field control of reversible hydrogenation in MLG.
Fig. 2: Characterization of the insulating and switching behaviours of hydrogenated MLG.
Fig. 3: Electric-field control of reversible hydrogenation in BLG and TLG.
Fig. 4: DFT calculations of hydrogenated MLG, BLG and TLG.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  2. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  3. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  Google Scholar 

  4. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  Google Scholar 

  5. Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

    Article  Google Scholar 

  6. Boukhvalov, D. W., Katsnelson, M. I. & Lichtenstein, A. I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008).

    Article  Google Scholar 

  7. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  Google Scholar 

  8. Whitener, K. E. Review article: hydrogenated graphene: a user’s guide. J. Vac. Sci. Technol. A 36, 05G401 (2018).

    Article  Google Scholar 

  9. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  Google Scholar 

  10. Luo, Z. et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009).

    Article  Google Scholar 

  11. Son, J. et al. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat. Commun. 7, 13261 (2016).

    Article  Google Scholar 

  12. Chen, H. et al. Fabrication of millimeter-scale, single-crystal one-third-hydrogenated graphene with anisotropic electronic properties. Adv. Mater. 30, 1801838 (2018).

    Article  Google Scholar 

  13. Ryu, S. et al. Reversible basal plane hydrogenation of graphene. Nano Lett. 8, 4597–4602 (2008).

    Article  Google Scholar 

  14. Bostwick, A. et al. Quasiparticle transformation during a metal-insulator transition in graphene. Phys. Rev. Lett. 103, 056404 (2009).

    Article  Google Scholar 

  15. Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010).

    Article  Google Scholar 

  16. Yang, Z., Sun, Y., Alemany, L. B., Narayanan, T. N. & Billups, W. E. Birch reduction of graphite. Edge and interior functionalization by hydrogen. J. Am. Chem. Soc. 134, 18689–18694 (2012).

    Article  Google Scholar 

  17. Yang, Y., Li, Y., Huang, Z. & Huang, X. (C1.04H)n: a nearly perfect pure graphane. Carbon 107, 154–161 (2016).

    Article  Google Scholar 

  18. Schäfer, R. A. et al. On the way to graphane—pronounced fluorescence of polyhydrogenated graphene. Angew. Chem. Int. Ed. 52, 754–757 (2013).

    Article  Google Scholar 

  19. Daniels, K. M. et al. Evidences of electrochemical graphene functionalization and substrate dependence by Raman and scanning tunneling spectroscopies. J. Appl. Phys. 111, 114306 (2012).

    Article  Google Scholar 

  20. Zhao, M., Guo, X.-Y., Ambacher, O., Nebel, C. E. & Hoffmann, R. Electrochemical generation of hydrogenated graphene flakes. Carbon 83, 128–135 (2015).

    Article  Google Scholar 

  21. Zhong, Y. L. & Swager, T. M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J. Am. Chem. Soc. 134, 17896–17899 (2012).

    Article  Google Scholar 

  22. Lee, W.-K., Whitener, KeithE. Jr., Robinson, J. T. & Sheehan, P. E. Patterning magnetic regions in hydrogenated graphene via e-beam irradiation. Adv. Mater. 27, 1774–1778 (2015).

    Article  Google Scholar 

  23. Echtermeyer, T. J. et al. Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett. 29, 952–954 (2008).

    Article  Google Scholar 

  24. Hayashi, C. K., Garmire, D. G., Yamauchi, T. J., Torres, C. M. & Ordonez, R. C. High on-off ratio graphene switch via electrical double layer gating. IEEE Access 8, 92314–92321 (2020).

    Google Scholar 

  25. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  Google Scholar 

  26. Ji, H., Wei, J. & Natelson, D. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 2988–2992 (2012).

    Article  Google Scholar 

  27. Tan, A. J. et al. Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater. 18, 35 (2019).

    Article  Google Scholar 

  28. Kremers, M. et al. Optical transmission spectroscopy of switchable yttrium hydride films. Phys. Rev. B 57, 4943–4949 (1998).

    Article  Google Scholar 

  29. Huiberts, J. N. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231–234 (1996).

    Article  Google Scholar 

  30. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Article  Google Scholar 

  31. Chen, F., Qing, Q., Xia, J., Li, J. & Tao, N. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J. Am. Chem. Soc. 131, 9908–9909 (2009).

    Article  Google Scholar 

  32. Ye, J. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. 108, 13002–13006 (2011).

    Article  Google Scholar 

  33. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  Google Scholar 

  34. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article  Google Scholar 

  35. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    Article  Google Scholar 

  36. Wang, Z., Wu, S., Ciacchi, L. C. & Wei, G. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst 143, 5074–5089 (2018).

    Article  Google Scholar 

  37. Sha, X. & Jackson, B. First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf. Sci. 496, 318–330 (2002).

    Article  Google Scholar 

  38. Sha, X., Jackson, B. & Lemoine, D. Quantum studies of Eley–Rideal reactions between H atoms on a graphite surface. J. Chem. Phys. 116, 7158–7169 (2002).

    Article  Google Scholar 

  39. Hornekær, L. et al. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104 (2006).

    Article  Google Scholar 

  40. Hornekær, L. et al. Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102 (2006).

    Article  Google Scholar 

  41. Li, Y. & Chen, Z. Patterned partially hydrogenated graphene (C4H) and its one-dimensional analogues: a computational study. J. Phys. Chem. C 116, 4526–4534 (2012).

    Article  Google Scholar 

  42. Haberer, D. et al. Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene. Adv. Mater. 23, 4497–4503 (2011).

    Article  Google Scholar 

  43. Boukhvalov, D. W. & Katsnelson, M. I. Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205 (2009).

    Article  Google Scholar 

  44. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    Article  Google Scholar 

  45. Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016).

    Article  Google Scholar 

  46. Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    Article  Google Scholar 

  47. Stojkovic, D., Zhang, P., Lammert, P. E. & Crespi, V. H. Collective stabilization of hydrogen chemisorption on graphenic surfaces. Phys. Rev. B 68, 195406 (2003).

    Article  Google Scholar 

  48. Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B. & Galvao, D. S. Graphene to graphane: a theoretical study. Nanotechnology 20, 465704 (2009).

    Article  Google Scholar 

  49. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  Google Scholar 

  50. Subrahmanyam, K. S. et al. Chemical storage of hydrogen in few-layer graphene. Proc. Natl Acad. Sci. 108, 2674–2677 (2011).

    Article  Google Scholar 

  51. Zhang, J. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 9, 5289 (2018).

    Article  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Xu for helpful discussions and technical support. This work is supported by the Basic Science Center Project of NSFC (grant no. 51788104) and the National Key R&D Program of China (grant nos. 2018YFA0307100 and 2016YFA0301001). This work is supported in part by the Beijing Advanced Innovation Center for Future Chips (ICFC).

Author information

Authors and Affiliations

Authors

Contributions

J.S.Z. and Y.Y.W. proposed and supervised the research. J.S.Z. designed the device structure and proposed the electrolyte. S.R.L., Y.C.W., C.L.Y. and Y.X.L. fabricated the devices and carried out the electric measurements. S.R.L. and Y.C.W. measured the Raman spectra. W.H.D. and J.H.L. performed the theoretical calculations. J.S.Z., Y.Y.W. and S.R.L. prepared the manuscript with comments from all the authors.

Corresponding authors

Correspondence to Yayu Wang or Jinsong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Cody Hayashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, J., Wang, Y. et al. Large transport gap modulation in graphene via electric-field-controlled reversible hydrogenation. Nat Electron 4, 254–260 (2021). https://doi.org/10.1038/s41928-021-00548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00548-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing