Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A spin–orbit torque device for sensing three-dimensional magnetic fields


Magnetic field sensors are important in a variety of applications, including transport and medical devices. However, existing solid-state approaches for the detection of three-dimensional magnetic fields require multiple sensors, making the set-ups bulky. Here, we show that a single spin–orbit torque device composed of a Ta/CoFeB/MgO heterostructure can detect a vector magnetic field. In-plane and out-of-plane field components lead to the displacement of domain walls in the CoFeB layer, modulating the associated anomalous Hall effect resistance. Modulation of the anomalous Hall effect resistance varies linearly with the x, y and z components of a vector magnetic field. Our compact three-dimensional magnetic field sensor exhibits good linearity within a certain range (3.2%, 2.7% and 4.3% for the x, y and z directions, respectively) and high sensitivity (205, 282 and 1,845 V A−1 T−1 for the x, y and z directions, respectively). The sensor also exhibits low 1/f noise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Three-dimensional magnetic field sensing based on a Ta/CoFeB/MgO heterostructure.
Fig. 2: Measured RH curves under ±6.8 MA cm−2.
Fig. 3: Net resistance contributed by Hx, Hy and Hz.
Fig. 4: Noise spectral density.

Data availability

Source data are provided with this paper. Any additional data are available from the corresponding author upon reasonable request.


  1. 1.

    Michelena, M. D. Small magnetic sensors for space applications. Sensors (Basel) 9, 2271–2288 (2009).

    Google Scholar 

  2. 2.

    Bird, J. & Arden, D. Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors. IEEE Wirel. Commun. 18, 28–35 (2011).

    Google Scholar 

  3. 3.

    Luo, Z. Y., Xu, Y. J., Yang, Y. M. & Wu, Y. H. Magnetic angular position sensor enabled by spin–orbit torque. Appl. Phys. Lett. 112, 262405 (2018).

    Google Scholar 

  4. 4.

    Lee, J. R. et al. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors. Sci. Rep. 6, 18692 (2016).

    Google Scholar 

  5. 5.

    Reininger, T., Welker, F. & von Zeppelin, M. Sensors in position control applications for industrial automation. Sens. Actuat. A Phys. 129, 270–274 (2006).

    Google Scholar 

  6. 6.

    Shibata, Y. et al. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope. Sci. Rep. 5, 15097 (2015).

    Google Scholar 

  7. 7.

    Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 053704 (2008).

    Google Scholar 

  8. 8.

    Ripka, P. New directions in fluxgate sensors. J. Magn. Magn. Mater. 215–216, 735–739 (2000).

    Google Scholar 

  9. 9.

    Zheng, Y. H. et al. Sensitivity enhancement of graphene hall sensors modified by single-molecule magnets at room temperature. RSC Adv. 7, 1776–1781 (2017).

    Google Scholar 

  10. 10.

    Labanowski, D. et al. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond. Sci. Adv. 4, eaat6574 (2018).

    Google Scholar 

  11. 11.

    Wang, P. F. et al. High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nat. Commun. 6, 6631 (2015).

    Google Scholar 

  12. 12.

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Google Scholar 

  13. 13.

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Google Scholar 

  14. 14.

    Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Google Scholar 

  15. 15.

    Zhao, N., Hu, J. L., Ho, S. W., Jones, T. K. W. & Liu, R. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nat. Nanotechnol. 6, 242–246 (2011).

    Google Scholar 

  16. 16.

    Zieren V. A new silicon micro-transducer for the measurement of the magnitude and direction of a magnetic-field vector. Proc. International Electron Devices Meeting 669–672 (IEEE, 1980).

  17. 17.

    Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Google Scholar 

  18. 18.

    Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Google Scholar 

  19. 19.

    Dietmayer, K. C. J. Magnetische Sensoren auf Basis des AMR-Effekts. Tech. Mess. 68, 269 (2009).

  20. 20.

    Yan, S. H. et al. Design and fabrication of full Wheatstone-bridge-based angular GMR. Sensors (Basel) 18, 1832 (2018).

    Google Scholar 

  21. 21.

    Li, P. S. et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv. Mater. 26, 4320–4325 (2014).

    Google Scholar 

  22. 22.

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Google Scholar 

  23. 23.

    Ohno, H., Stiles, M. D. & Dieny, B. Spintronics. Proc. IEEE 104, 1782–1786 (2016).

    Google Scholar 

  24. 24.

    Kordic, S. Integrated 3-D magnetic sensor based on an n-p-n transistor. IEEE Electron Device Lett. 7, 196–198 (1986).

    Google Scholar 

  25. 25.

    Popovic, R. S. The vertical Hall-effect device. IEEE Electron Device Lett. 5, 357–358 (1984).

    Google Scholar 

  26. 26.

    Kordic, S. Sensitivity of the silicon high-resolution 3-dimensional magnetic-field vector sensor. Proc. International Electron Devices Meeting 188–191 (IEEE, 1986).

  27. 27.

    Wei, F. F. et al. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a sagnac loop. Sci. Rep. 7, 4725 (2017).

    Google Scholar 

  28. 28.

    Ettelt, D. et al. 3D magnetic field sensor concept for use in inertial measurement units (IMUs). J. Microelectromech. Syst. 23, 324–333 (2014).

    Google Scholar 

  29. 29.

    Luong, V. S. et al. Planarization, fabrication and characterization of three-dimensional magnetic field sensors. IEEE Trans. Nanotechnol. 17, 11–25 (2017).

    Google Scholar 

  30. 30.

    Chen, J., Wurz, M. C., Belski, A. & Rissing, L. Designs and characterizations of soft magnetic flux guides in a 3-D magnetic field sensor. IEEE Trans. Magn. 48, 1481–1484 (2012).

    Google Scholar 

  31. 31.

    Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Google Scholar 

  32. 32.

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Google Scholar 

  33. 33.

    Liu, L. Q., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Google Scholar 

  34. 34.

    Bhowmik, D. et al. Deterministic domain wall motion orthogonal to current flow due to spin orbit torque. Sci. Rep. 5, 11823 (2015).

    Google Scholar 

  35. 35.

    Zhang, S. et al. Spin–orbit-torque-driven multilevel switching in Ta/CoFeB/MgO structures without initialization. Appl. Phys. Lett. 114, 042401 (2019).

    Google Scholar 

  36. 36.

    Fan, W. J. et al. Asymmetric spin–orbit-torque-induced magnetization switching with a noncollinear in-plane assisting magnetic field. Phys. Rev. Appl. 11, 034018 (2019).

    Google Scholar 

  37. 37.

    Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Google Scholar 

  38. 38.

    Chang Lau, Y., Sheng, P., Mitani, S., Chiba, D. & Hayashi, M. Electric field modulation of the non-linear areal magnetic anisotropy energy. Appl. Phys. Lett. 110, 022405 (2017).

    Google Scholar 

  39. 39.

    Hayashi, Y. et al. Electric-field effect on magnetic anisotropy in Pt/Co/Pd/MgO structures deposited on GaAs and Si substrates. Appl. Phys. Express 11, 013003 (2018).

    Google Scholar 

  40. 40.

    Yamanouchi, M. et al. Domain structure in CoFeB thin films with perpendicular magnetic anisotropy. IEEE Magn. Lett. 2, 3000304 (2011).

    Google Scholar 

  41. 41.

    Papusoi, C. et al. Probing fast heating in magnetic tunnel junction structures with exchange bias. New J. Phys. 10, 103006 (2008).

    Google Scholar 

  42. 42.

    Prejbeanu, I. L. et al. Thermally assisted MRAMs: ultimate scalability and logic functionalities. J. Phys. D 46, 074002 (2013).

    Google Scholar 

  43. 43.

    Song, M. et al. Low current writing perpendicular magnetic random access memory with high thermal stability. Mater. Des. 92, 1046–1051 (2016).

    Google Scholar 

  44. 44.

    Wang, M. X. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat. Commun. 9, 671 (2018).

    Google Scholar 

  45. 45.

    Pai, C. F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Google Scholar 

  46. 46.

    Niimi, Y. et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).

    Google Scholar 

  47. 47.

    Jeng, J. T., Chiang, C. Y., Chang, C. H. & Lu, C. C. Vector magnetometer with dual-bridge GMR sensors. IEEE Trans. Magn. 50, 1–4 (2014).

    Google Scholar 

  48. 48.

    Lu, C. C. & Huang, J. A 3-axis miniature magnetic sensor based on a planar fluxgate magnetometer with an orthogonal fluxguide. Sensors (Basel) 15, 14727–14744 (2015).

    Google Scholar 

  49. 49.

    Zhang, Y., Hao, Q. & Xiao, G. Low-frequency noise of magnetic sensors based on the anomalous Hall effect in Fe–Pt alloys. Sensors (Basel) 19, 3537 (2019).

    Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (NSFC grants 62074063, 61821003, 61904051, 61904060, 51671098 and 61674062), the National Key Research and Development Program of China (grant no. 2020AAA0109000), the Research Project of Wuhan Science and Technology Bureau (grant no. 2019010701011394) and the Fundamental Research Funds for the Central Universities (HUST: 2018KFYXKJC019). We acknowledge assistance from G. Wu and L. Zhan in providing the equipment for noise measurements.

Author information




L.Y. conceived the ideas and designed the experiments. S.Z. fabricated the samples and implemented the experimental set-up. R.L. performed the experimental measurements and the simulations by OOMMF and COMSOL. R.L., S.Z., Z.G., J.O. and L.Y. analysed the results. Y.X. and L.X. provided the MOKE equipment and S.Z. performed the MOKE measurements. M.S., J.H., Q.Z. and X.Y. provided the theoretical support. R.L., S.Z., S.L., Z.G. and L.Y. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Long You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Coriolan Tiusan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–12 and Table 1.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhang, S., Luo, S. et al. A spin–orbit torque device for sensing three-dimensional magnetic fields. Nat Electron 4, 179–184 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing