Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges for spintronics in the microelectronics industry

Abstract

Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges—at both the device and the system level—that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Nonvolatile magnetic memories.
Fig. 2: Magnetic sensors.
Fig. 3: Radiofrequency and microwaves devices.
Fig. 4: Spintronic approaches for logic.
Fig. 5: Spintronics materials.
Fig. 6: Modelling approaches used in spintronics.

References

  1. Beyond CMOS – IEEE International Roadmap for Devices and Systems (IEEE 2018); https://irds.ieee.org/home/what-is-beyond-cmos.

  2. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  3. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  Google Scholar 

  4. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mat. 320, 1190–1216 (2008).

    Article  Google Scholar 

  5. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  Google Scholar 

  6. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  Google Scholar 

  7. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  8. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  9. Mark D. S, Miltat, J. Spin-transfer torque and dynamics. In Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) 225–308 (Springer, 2006).

  10. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  11. Demidov, V. E. et al. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1–31 (2017).

    Article  MathSciNet  Google Scholar 

  12. Jaroslav, F., Matos-Abiaguea, A., Ertlera, C., Stano, P. & Zuti, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    Google Scholar 

  13. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  Google Scholar 

  14. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  15. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

  16. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  17. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  18. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  19. Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    Article  MathSciNet  Google Scholar 

  20. Kawahara, T., Ito, K., Takemura, R. & Ohno, H. Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613–627 (2012).

    Article  Google Scholar 

  21. Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotecnolh. 10, 187–191 (2015).

    Article  Google Scholar 

  22. Apalkov, D., Dieny, B. & Slaughter, J. M. Magnetoresistive random access memory. Proc. IEEE 104, 1796–1830 (2016).

    Article  Google Scholar 

  23. Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D. 46, 074001 (2013).

    Article  Google Scholar 

  24. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  Google Scholar 

  25. Bauer, G. E., Saitoh, E. & Van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  Google Scholar 

  26. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells Journal of physics. Cond. Mat. 15, R935 (2003).

    Article  Google Scholar 

  27. Němec, P. et al. Experimental observation of the optical spin transfer torque. Nat. Phys. 8, 411–415 (2012).

    Article  Google Scholar 

  28. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  Google Scholar 

  29. Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    Article  Google Scholar 

  30. Borders, W. A., Fukami, S. & Ohno, H. Characterization of spin-orbit torque-controlled synapse device for artificial neural network applications. Jpn. J. Appl. Phys. 57, 1002B2 (2018).

    Article  Google Scholar 

  31. Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Stochastic p-bits for invertible logic. Phys. Rev. X 7, 031014 (2017).

    Google Scholar 

  32. Walowski, J. & Münzenberg, M. Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016).

    Article  Google Scholar 

  33. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483 (2016).

    Article  Google Scholar 

  34. Mankins, J. Technology Readiness Levels—A White Paper (NASA 1995); https://go.nature.com/2KcePNt

  35. Lee, Y. K. et al. Embedded STT-MRAM in 28-nm FDSOI logic process for industrial MCU/IoT application. In IEEE Symposium on VLSI Technology 181–182 (IEEE, 2018).

  36. Shih, Y. C. et al. A 1-Mb 28-nm 1T1MTJ STT-MRAM with single-cap offset-cancelled sense amplifier and in situ self-write-termination. IEEE J. Solid-State Circuits 54, 231–239 (2019).

    Article  Google Scholar 

  37. Lee, K. et al. 22-nm FD-SOI embedded MRAM with full solder reflow compatibility and enhanced magnetic immunity. In IEEE Symposium on VLSI Technology 183–184 (IEEE, 2018).

  38. Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 18.1.1–18.1.4 (IEEE, 2018).

  39. McGrath, D. Intel says FinFET-based embedded MRAM is production-ready. EE Times (20 February 2019); https://go.nature.com/3gQyWzf

  40. Samsung Electronics starts commercial shipment of eMRAM product based on 28nm FD-SOI process. (Samsung, 2019); https://go.nature.com/2KlU8Pj

  41. Mason, M. Making new memories: 22nm eMRAM is Ready to Displace eFlash. GlobalFoundries (29 Aug 2019); https://go.nature.com/3eBhrCB

  42. Alzate, J. G. et al. 2 MB array-level demonstration of STT-MRAM process and performance towards L4 cache applications. In 2019 IEEE Int. Electron Devices Meeting (IEDM) 2.4.1–2.4.4 (IEEE, 2019).

  43. Sato, H. et al. 14ns write speed 128Mb density Embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process. 2018 IEEE Int. Electron Devices Meeting (IEDM) 609 (IEEE, 2018).

  44. Nguyen, V.D. et al. Novel approach for nano-patterning magnetic tunnel junctions stacks at narrow pitch: A route towards high density STT-MRAM applications. In 2017 IEEE International Electron Devices Meeting (IEDM) 38.5.1–38.5.4 (IEEE, 2017).

  45. Hu, G. et al. STT-MRAM with double magnetic tunnel junctions. 2015 IEEE Int. Electron Devices Meeting (IEDM) 26.3.1-26.3.4 (IEEE, 2015).

  46. Perrissin, N. et al. A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. Nanoscale 10, 12187–12195 (2018).

    Article  Google Scholar 

  47. Garello, K. et al. Manufacturable 300mm platform solution for field-free switching SOT-MRAM. In 2019 Symposium on VLSI Technology T194–T195 (IEEE, 2019).

  48. Garello, K. et al. SOT-MRAM 300MM Integration for low power and ultrafast embedded memories. in 2018 IEEE Symposium on VLSI Circuits 81–82 (2018).

  49. Fukami, S. et al. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535 (2016).

    Article  Google Scholar 

  50. Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnetic/ferromagnetic/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Article  Google Scholar 

  51. Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582 (2018).

    Article  Google Scholar 

  52. Sato, N. et al. Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron. 1, 508 (2018).

    Article  Google Scholar 

  53. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2011).

    Article  Google Scholar 

  54. Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10, 853 (2011).

    Article  MathSciNet  Google Scholar 

  55. Yoda, H. et al. Voltage-control spintronics memory (VoCSM) having potentials of ultra-low energy-consumption and high-density. In 2016 IEEE Int. Electron Devices Meeting (IEDM) 27.6.1–27.6.4 (IEEE, 2016).

  56. Parkin, S. S. P. & Yang, S. H. Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015).

    Article  Google Scholar 

  57. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152 (2013).

    Article  Google Scholar 

  58. Zheng, C. et al. Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans. Mag. 55, 1–30 (2019).

    Google Scholar 

  59. Freitas, P. P., Ferreira, R. & Cardoso, S. Spintronic sensors. Proc. IEEE 104, 1894 (2016).

    Article  Google Scholar 

  60. Fermon, C. & Van de Voorde, M. (eds) Nanomagnetism: Applications and Perspectives I–XVIII (Wiley, Ltd, 2017); https://doi.org/10.1002/9783527698509

  61. Silva, A. et al. Linearization strategies for high sensitivity magnetoresistive sensors. Eur. J. Phys. D. 72, 10601 (2015).

    Google Scholar 

  62. Paz, E. et al. Room temperature direct detection of low frequency magnetic fields in the 100 pT/√Hz range using large arrays of magnetic tunnel junctions. J. Appl. Phys. 115, 17E501 (2014).

    Article  Google Scholar 

  63. Chaves, R. C. et al. Low frequency picotesla field detection using hybrid MgO based tunnel sensors. Appl. Phys. Lett. 91, 102504 (2007).

    Article  Google Scholar 

  64. Lee, Y. C. et al. Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer. J. Appl. Phys. 117, 17A320 (2015).

    Article  Google Scholar 

  65. Suess, D. et al. Topologically protected vortex structures for low-noise magnetic sensors with high linear range. Nat. Electron. 1, 362 (2018).

    Article  Google Scholar 

  66. Stearrett, R. et al. Evolution of barrier-resistance noise in CoFeB/MgO/CoFeB tunnel junctions during annealing. J. Appl. Phys. 107, 064502 (2010).

    Article  Google Scholar 

  67. Wisniowski, P. et al. Reduction of low frequency magnetic noise by voltage induced magnetic anisotropy modulation in tunneling magnetoresistance sensors. Appl. Phys. Lett. 105, 082404 (2014).

    Article  Google Scholar 

  68. Akpakwu, G. A., Silva, B. J., Hancke, G. P. & Abu-Mahfouz, A. M. A Survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 6, 3619 (2017).

    Article  Google Scholar 

  69. Chen, T. et al. Spin-Torque and Spin-Hall Nano-Oscillators. Proc. IEEE 104, 1919 (2016).

    Article  Google Scholar 

  70. Kreissig, M. et al. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits. AIP Adv. 7, 056653 (2017).

    Article  Google Scholar 

  71. Liu, L., Pai, C. F., Ralph, D. C. & Buhrman, R. A. Magnetic Oscillations Driven by the Spin Hall Effect in 3-Terminal Magnetic Tunnel Junction Devices. Phys. Rev. Lett. 109, 186602 (2012).

    Article  Google Scholar 

  72. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028 (2012).

    Article  Google Scholar 

  73. Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).

    Article  Google Scholar 

  74. Ruiz-Calafora, A. et al. Frequency shift keying by current modulation in a MTJ-based STNO with high data rate. Appl. Phys. Lett. 111, 082401 (2017).

    Article  Google Scholar 

  75. Litvinenko, A. et al. Analog and digital phase modulation of spin torque nano-oscillators. Preprint at https://arxiv.org/abs/1905.02443 (2019).

  76. Louis, S. et al. Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator. Appl. Phys. Lett. 113, 112401 (2018).

    Article  Google Scholar 

  77. Litvinenko, A. et al. Ultrafast sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator. Nano Lett. https://doi.org/10.1021/acs.nanolett.0c02195 (2020).

  78. Choi, H. S. et al. Spin nano–oscillator–based wireless communication. Sci. Rep. 4, 5486 (2014).

    Article  Google Scholar 

  79. Tsunegi, S. et al. Scaling up electrically synchronized spin torque oscillator networks. Sci. Rep. 8, 13475 (2018).

    Article  Google Scholar 

  80. Lebrun, R. et al. Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commun. 8, 15825 (2017).

    Article  Google Scholar 

  81. Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    Article  Google Scholar 

  82. Fang, B. et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 11, 014022 (2019).

    Article  Google Scholar 

  83. Microwave Spintronics for Wireless Sensor Networks – SPINNET (ANR, 2018); https://anr.fr/Project-ANR-18-CE24-0012.

  84. Marković, D. et al. Detection of the microwave emission from a spin-torque oscillator by a spin diode. Phys. Rev. Appl. 13, 044050 (2020).

    Article  Google Scholar 

  85. Sulymenko, O. R., Prokopenko, O. V., Tyberkevych, V. S. & Slavin, A. N. Terahertz-frequency signal source based on an antiferromagnetic tunnel junction. IEEE Mag. Lett. 9, 3104605 (2018).

    Google Scholar 

  86. Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    Article  Google Scholar 

  87. Zavislyak, I. V. & Popov M. A. Microwave properties and applications of yttrium iron garnet (YIG) films: current state of art and perspectives. In Yttrium: Compounds, Production and Applications (ed. Volkerts, B. D.) 87–125 (Nova, 2009).

  88. Harris, V. G. Modern microwave ferrites. IEEE Trans. Mag. 48, 1075 (2012).

    Article  Google Scholar 

  89. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018).

    Article  Google Scholar 

  90. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  91. Datta, S. & Das, B. Electronic analog of the electro‐optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  Google Scholar 

  92. Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  MATH  Google Scholar 

  93. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

    Article  Google Scholar 

  94. Imre, A. et al. Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata. Science 311, 205–208 (2006).

    Article  Google Scholar 

  95. Zografos, O. et al. Exchange-driven magnetic logic. Sci. Rep. 7, 12154 (2017).

    Article  Google Scholar 

  96. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35 (2019).

    Article  Google Scholar 

  97. Radu, I. P. et al. Spintronic majority gates. Proc. 2015 IEEE Int. Electron Devices Meeting (IEDM) 32.5.1–32.5.4 (2015).

  98. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  Google Scholar 

  99. Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron Device Lett. 32, 1128–1130 (2011).

    Article  Google Scholar 

  100. Koumpouras, K. et al. A majority gate with chiral magnetic solitons. J. Phys. Condens. Matter 30, 375801 (2018).

    Article  Google Scholar 

  101. Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011).

    Article  Google Scholar 

  102. Wang, Q. et al. Realization of a nanoscale magnonic directional coupler for all-magnon circuits. Preprint at https://arXiv.org/abs/1905.12353 (2019).

  103. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (0214).

  104. Fischer, T. et al. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017).

    Article  Google Scholar 

  105. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    Article  Google Scholar 

  106. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  Google Scholar 

  107. Kanazawa, N. et al. The role of Snell’s law for a magnonic majority gate. Sci. Rep. 7, 7898 (2017).

    Article  Google Scholar 

  108. Wang, Q. et al. Integrated magnonic half-adder. Preprint at https://arxiv.org/abs/1902.02855 (2019).

  109. Sugahara, S. & Nitta, J. Spin transistor electronics: an overview and outlook. Proc. IEEE 98, 2124 (2010).

    Article  Google Scholar 

  110. Taniyama, T., Wada, E., Itoh, M. & Yamaguchi, M. Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. NPG Asia Mater. 3, 65–73 (2011).

    Article  Google Scholar 

  111. Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol. 10, 35 (2015).

    Article  Google Scholar 

  112. Brächer, T. & Pirro, P. An analog magnon adder for all-magnonic neurons. J. Appl. Phys. 124, 152119 (2018).

    Article  Google Scholar 

  113. Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100 (2019).

    Article  Google Scholar 

  114. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article  Google Scholar 

  115. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  Google Scholar 

  116. Hirohata, A. et al. Roadmap for Emerging Materials for Spintronic Device Applications. IEEE Trans. Magn. 51, 0800511 (2015).

    Article  Google Scholar 

  117. Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D. 50, 363001 (2017).

    Article  Google Scholar 

  118. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944 (2000).

    Article  Google Scholar 

  119. Geprags, S. et al. Strain-controlled non-volatile magnetization switching. Solid State Commun. 198, 7–12 (2013).

    Article  Google Scholar 

  120. Lambert, C. H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337 (2014).

    Article  Google Scholar 

  121. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo spin valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article  Google Scholar 

  122. Piquemal-Banci, M. et al. Insulator-to-metallic spin-filtering in 2D magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12, 4712 (2018).

    Article  Google Scholar 

  123. Hirohata, A., Frost, W., Samiepour, M. & Kim, J. Y. Perpendicular magnetic anisotropy in Heusler alloy films and their magnetoresistive junctions. Materials 11, 105 (2018).

    Article  Google Scholar 

  124. Sagar, J. et al. Over 50% reduction in the formation energy of Co-based Heusler alloy films by two-dimensional crystallization. Appl. Phys. Lett. 105, 032401 (2014).

    Article  Google Scholar 

  125. Yang, H. et al. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures. Nano Lett. 16, 145 (2015).

    Article  Google Scholar 

  126. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 1, 699 (2014).

    Article  Google Scholar 

  127. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300 (2017).

    Article  Google Scholar 

  128. Yang, H. et al. Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Nat. Mater. 17, 605–609 (2018).

    Article  Google Scholar 

  129. Miao, G. X., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2008).

    Article  Google Scholar 

  130. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  131. Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

    Article  Google Scholar 

  132. Cummings, A. W. et al. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

    Article  Google Scholar 

  133. Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303 (2018).

    Article  Google Scholar 

  134. Leutenantsmeyer, J. C. et al. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2017).

    Article  Google Scholar 

  135. Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473 (2019).

    Article  Google Scholar 

  136. Riddiford, L. J. et al. Efficient spin current generation in low-damping Mg(Al, Fe)2O4 thin films. Appl. Phys. Lett. 115, 122401 (2019).

    Article  Google Scholar 

  137. Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article  Google Scholar 

  138. Butler, W. H. et al. Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Mag. 48, 4684 (2012).

    Article  Google Scholar 

  139. Bertotti, G. Hysteresis in Magnetism (Academic Press, 1998).

  140. Chubykalo-Fesenko, O. & Nieves, P. Handbook of Materials Modeling (Springer, 2018).

  141. Guo, W. et al. SPICE modelling of magnetic tunnel junctions written by spin-transfer torque. J. Phys. D. 43, 215001 (2010).

    Article  Google Scholar 

  142. Jabeur, K. et al. Comparison of Verilog-A compact modelling strategies for spintronic devices. Electron. Lett. 50, 1353 (2014).

    Article  Google Scholar 

  143. Kazantseva, N. et al. Towards multiscale modeling of magnetic materials: Simulations of FePt. Phys. Rev. B 77, 184428 (2008).

    Article  Google Scholar 

  144. Abert, C. et al. A self-consistent spin-diffusion model for micromagnetics. Sci. Rep. 6, 16 (2016).

    Article  Google Scholar 

  145. Sturma, S. M., Bellegarde, C., Toussaint, J. C. & Gusakova, D. Simultaneous resolution of the micromagnetic and spin transport equations applied to current-induced domain wall dynamics. Phys. Rev. B 94, 104405 (2016).

    Article  Google Scholar 

  146. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet-normal metal systems. Phys. Rev. Lett. 84, 2481 (2000).

    Article  Google Scholar 

  147. Manipatruni, S., Nikonov, D. E. & Young, I. A. Modeling and design of spintronic integrated circuits. IEEE Trans. Circ. Syst. 59, 2801 (2012).

    MathSciNet  Google Scholar 

  148. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  Google Scholar 

  149. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2015).

    Article  Google Scholar 

  150. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231 (2016).

    Article  Google Scholar 

  151. 8Gb C-die DDR4 SDRAM x16, K4A8G165WC datasheet (Samsung, 2017); https://go.nature.com/2Y8lRez

  152. Jones, S. 7nm, 5nm and 3nm Logic, Current and Projected Processes (Semiwiki, 2018); https://go.nature.com/2XWfpaf

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.D. and P.B. have coordinated the writing of this review. I.L.P., K.G. and P.G. wrote the section “Magnetic memories”. P.F., R.L. and W.R. wrote the section “Magnetic sensors”; U.E., S.O.D., J.A., P.B. and A.D. wrote the section “Radio-frequency and microwave devices”. P.P., C.A., A.A. and A.V.C. wrote the section “Logic and non-Boolean devices”. A.H., S.M., S.V. and M.C.O. wrote the section “Advanced materials, fabrication and tests”. M.d’A., G.P., G.F., L.L.D., R.C. and O.C.F. wrote the section “Modelling and design”.

Corresponding authors

Correspondence to B. Dieny or P. Bortolotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dieny, B., Prejbeanu, I.L., Garello, K. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat Electron 3, 446–459 (2020). https://doi.org/10.1038/s41928-020-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0461-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing