Analogue two-dimensional semiconductor electronics

Abstract

Digital electronics are ubiquitous in the modern world, but analogue electronics also play a crucial role in many devices and applications. Analogue circuits are typically manufactured using silicon as the active material. However, the desire for improved performance, new devices and flexible integration has—as for their digital counterparts—led to research into alternative materials, including the use of two-dimensional (2D) materials. Here, we show that operational amplifiers—a basic building block of analogue electronics—can be created using the 2D semiconductor molybdenum disulfide (MoS2) as the active material. The device is capable of stable operation with good performance, and we demonstrate its use in feedback circuits including inverting amplifiers, integrators, log amplifiers and transimpedance amplifiers. We also show that our 2D platform can be used to monolithically integrate an analogue signal preconditioning circuit with a MoS2 photodetector.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: OPA circuit and fabricated chip.
Fig. 2: Device uniformity.
Fig. 3: OPA performance.
Fig. 4: Analogue electronic circuits.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Google Scholar 

  2. 2.

    Gao, Q. et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 9, 4778 (2018).

    Google Scholar 

  3. 3.

    Peng, L. M., Zhang, Z. & Wang, S. Carbon nanotube electronics: recent advances. Mater. Today 17, 433–442 (2014).

    Google Scholar 

  4. 4.

    Fatahilah, M. F. et al. 3D GaN nanoarchitecture for field-effect transistors. Micro Nano Eng. 3, 59–81 (2019).

    Google Scholar 

  5. 5.

    Liu, P.-T. TFT Materials and Devices. Encyclopedia of Modern Optics (Cambridge Univ. Press, 2018).

  6. 6.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Google Scholar 

  7. 7.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Google Scholar 

  8. 8.

    Cao, W., Kang, J., Sarkar, D., Liu, W. & Banerjee, K. 2D semiconductor FETs—projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015).

    Google Scholar 

  9. 9.

    Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2016).

    Google Scholar 

  10. 10.

    Nourbakhsh, A., Zubair, A., Joglekar, S., Dresselhaus, M. & Palacios, T. Subthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack. Nanoscale 9, 6122–6127 (2017).

    Google Scholar 

  11. 11.

    Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

    Google Scholar 

  12. 12.

    Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011).

    Google Scholar 

  13. 13.

    Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10-nm channel length. Nano Lett. 16, 7798–7806 (2016).

    Google Scholar 

  14. 14.

    Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Google Scholar 

  15. 15.

    Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Google Scholar 

  16. 16.

    Molina-Mendoza, A. J. et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 28, 4042–4051 (2016).

    Google Scholar 

  17. 17.

    Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014).

    Google Scholar 

  18. 18.

    Islam, Z., Zhang, K., Robinson, J. & Haque, A. Quality enhancement of low temperature metal organic chemical vapor deposited MoS2: an experimental and computational investigation. Nanotechnology 30, 395402 (2019).

    Google Scholar 

  19. 19.

    Quayle, P. et al. High-quality, large-grain MoS2 films grown on 100-mm sapphire substrates using a novel molybdenum precursor. Preprint at https://arxiv.org/pdf/1811.05044.pdf (2018).

  20. 20.

    Chang, H.-C. et al. Synthesis of large-area InSe monolayers by chemical vapor deposition. Small 14, 1802351 (2018).

    Google Scholar 

  21. 21.

    Li, H., Huang, J. K., Shi, Y. & Li, L. J. Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv. Mater. Interfaces 6, 1900220 (2019).

    Google Scholar 

  22. 22.

    Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Google Scholar 

  23. 23.

    Yu, L. et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In 2015 IEEE International Electron Devices Meeting (IEDM) Technical Digest 32.3.1–32.3.4 (IEEE, 2015).

  24. 24.

    Yang, R. et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat. Electron. 2, 108–114 (2019).

    Google Scholar 

  25. 25.

    Yore, A. E. et al. Large array fabrication of high performance monolayer MoS2 photodetectors. Appl. Phys. Lett. 111, 043110 (2017).

    Google Scholar 

  26. 26.

    Lan, Y. W. et al. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz. 4, 683–688 (2019).

    Google Scholar 

  27. 27.

    Chiu, M. et al. Metal‐guided selective growth of 2D materials: demonstration of a bottom‐up CMOS inverter. Adv. Mater. 31, 1900861 (2019).

    Google Scholar 

  28. 28.

    Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Google Scholar 

  29. 29.

    Zhang, H. et al. High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 12, 2773–2779 (2018).

    Google Scholar 

  30. 30.

    Ho, R., Lau, C., Hills, G. & Shulaker, M. M. Carbon nanotube CMOS analog circuitry. IEEE Trans. Nanotechnol. 18, 845–848 (2019).

    Google Scholar 

  31. 31.

    Lei, T. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 2161 (2019).

    Google Scholar 

  32. 32.

    Maiellaro, G. et al. High-gain operational transconductance amplifiers in a printed complementary organic TFT technology on flexible foil. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3117–3125 (2013).

    Google Scholar 

  33. 33.

    Rahman, A., Chen, Y., Hasan, M. M. & Jang, J. A high performance operational amplifier using coplanar dual gate a-IGZO TFTs. IEEE J. Electron Devices Soc. 7, 655–661 (2019).

    Google Scholar 

  34. 34.

    Han, S.-J., Garcia, A. V., Oida, S., Jenkins, K. A. & Haensch, W. Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014).

    Google Scholar 

  35. 35.

    Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, 1989).

  36. 36.

    Hébert, C. et al. Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28, 1703976 (2018).

    Google Scholar 

  37. 37.

    Guo, H. et al. Transparent, flexible and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017).

    Google Scholar 

  38. 38.

    Kabiri Ameri, S. et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017).

    Google Scholar 

  39. 39.

    Yoo, G. et al. Flexible and wavelength-selective MoS2 phototransistors with monolithically integrated transmission color filters. Sci. Rep. 7, 40945 (2017).

    Google Scholar 

  40. 40.

    Park, M. et al. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556–2562 (2016).

    Google Scholar 

  41. 41.

    International Roadmap for Devices and Systems 2018—More Moore Update (IEEE, 2018).

  42. 42.

    Matsukawa, T. et al. Decomposition of on-current variability of nMOS FinFETs for prediction beyond 20 nm. IEEE Trans. Electron Devices 59, 2003–2010 (2012).

    Google Scholar 

  43. 43.

    Samsudin, K., Adamu-Lema, F., Brown, A. R., Roy, S. & Asenov, A. Combined sources of intrinsic parameter fluctuations in sub-25-nm generation UTB-SOI MOSFETs: a statistical simulation study. Solid. State Electron. 51, 611–616 (2007).

    Google Scholar 

  44. 44.

    Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Google Scholar 

  45. 45.

    Illarionov, Y. Y. et al. Reliability of scalable MoS2 FETs with 2-nm crystalline CaF2 insulators. 2D Mater. 6, 045004 (2019).

    Google Scholar 

  46. 46.

    Zhang, H. et al. Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2. J. Chem. Phys. 146, 052810 (2017).

    Google Scholar 

  47. 47.

    Illarionov, Y. Y. et al. Improved hysteresis and reliability of MoS2 transistors with high-quality CVD growth and Al2O3 encapsulation. IEEE Electron Device Lett. 38, 1763–1766 (2017).

    Google Scholar 

  48. 48.

    Mleczko, M. J. et al. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 19, 6352–6362 (2019).

    Google Scholar 

  49. 49.

    Gray, P. R., Hurst, P. J., Lewis, S. H. & Meyer, R. G. Analysis and Design of Analog Integrated Circuits 5th edn (Wiley, 2009).

  50. 50.

    Tsividis, Y. P. Design considerations in single-channel MOS analog integrated circuits-a tutorial. IEEE J. Solid State Circuits 13, 383–391 (1978).

    Google Scholar 

  51. 51.

    Enz, C. C., Krummenacher, F. & Vittoz, E. A. An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal Process. 8, 83–114 (1995).

    Google Scholar 

  52. 52.

    Thompson, M. Intuitive Analog Circuit Design (Elsevier, 2006).

  53. 53.

    Polat, E. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5, eaaw7846 (2019).

    Google Scholar 

  54. 54.

    Tong, S. W. et al. High performance field effect transistor based on large-sized highly crystalline MoS2 single crystal. In 2019 Electron Devices Technology and Manufacturing Conference (EDTM) 188–190 (IEEE, 2019).

Download references

Acknowledgements

We thank A.J. Molina-Mendoza for technical assistance and N. Schaefer and J.A. Garrido for providing a polyimide substrate. We acknowledge financial support by the European Union (grant agreements 785219 Graphene Flagship, 796388 ECOMAT and 828901 ORIGENAL), the Austrian Science Fund FWF (START Y 539-N16) and the Italian MIUR (FIVE 2D).

Author information

Affiliations

Authors

Contributions

T.M. conceived the project. S.W. and T.M. designed the chip. D.K.P. grew the MoS2 film. D.K.P. and S.W. fabricated the samples and performed the measurements. D.N. contributed to the sample fabrication. L.M. and M. Paur characterized the MoS2 film. G.F., M. Paliy and G.I. performed the Monte Carlo simulations. S.W. and T.M. wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Stefan Wachter or Thomas Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polyushkin, D.K., Wachter, S., Mennel, L. et al. Analogue two-dimensional semiconductor electronics. Nat Electron 3, 486–491 (2020). https://doi.org/10.1038/s41928-020-0460-6

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing