High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation


Ferroelectric tunnel junctions use a thin ferroelectric layer as a tunnelling barrier, the height of which can be modified by switching its ferroelectric polarization. The junctions can offer low power consumption, non-volatile switching and non-destructive readout, and thus are promising for the development of memory and computing applications. However, achieving a high tunnelling electroresistance (TER) in these devices remains challenging. Typical junctions, such as those based on barium titanate or hafnium dioxide, are limited by their small barrier height modulation of around 0.1 eV. Here, we report a ferroelectric tunnel junction that uses layered copper indium thiophosphate (CuInP2S6) as the ferroelectric barrier, and graphene and chromium as asymmetric contacts. The ferroelectric field effect in CuInP2S6 can induce a barrier height modulation of 1 eV in the junction, which results in a TER of above 107. This modulation, which is shown using Kelvin probe force microscopy and Raman spectroscopy, is due to the low density of states and small quantum capacitance near the Dirac point of the semi-metallic graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The vdW FTJ device structure and the ferroelectric property of CIPS.
Fig. 2: Electrical characteristics of the vdW FTJ.
Fig. 3: Origin of the giant TER.
Fig. 4: Effect of the graphene semi-metallic contact on the vdW FTJ characteristics.
Fig. 5: Performance of the vdW FTJ as a memory device.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).

    Google Scholar 

  2. 2.

    Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Google Scholar 

  3. 3.

    Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11, 289–293 (2012).

    Google Scholar 

  4. 4.

    Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2012).

    Google Scholar 

  5. 5.

    Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Google Scholar 

  6. 6.

    Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Google Scholar 

  7. 7.

    Pantel, D. & Alexe, M. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B 82, 134105 (2010).

    Google Scholar 

  8. 8.

    Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).

    Google Scholar 

  9. 9.

    Hambe, M. et al. Crossing an interface: ferroelectric control of tunnel currents in magnetic complex oxide heterostructures. Adv. Funct. Mater. 20, 2436–2441 (2010).

    Google Scholar 

  10. 10.

    Hoffmann, M. et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).

    Google Scholar 

  11. 11.

    Ambriz-Vargas, F. et al. A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces 9, 13262–13268 (2017).

    Google Scholar 

  12. 12.

    Xi, Z. et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun. 8, 15217 (2017).

    Google Scholar 

  13. 13.

    Dong, Z., Cao, X., Wu, T. & Guo, J. Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction. J. Appl. Phys. 123, 094501 (2018).

    Google Scholar 

  14. 14.

    Bang, T. et al. Low-frequency noise characteristics in SONOS flash memory with vertically stacked nanowire FETs. IEEE Electron Dev. Lett. 38, 40–43 (2016).

    Google Scholar 

  15. 15.

    Muller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    Google Scholar 

  16. 16.

    Mueller, S. et al. Incipient ferroelectricity in Al‐doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

    Google Scholar 

  17. 17.

    Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

    Google Scholar 

  18. 18.

    Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Google Scholar 

  19. 19.

    Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Google Scholar 

  20. 20.

    Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

    Google Scholar 

  21. 21.

    Chandrasekaran, A., Mishra, A. & Singh, A. K. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett. 17, 3290–3296 (2017).

    Google Scholar 

  22. 22.

    Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015).

    Google Scholar 

  23. 23.

    You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Google Scholar 

  24. 24.

    Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Google Scholar 

  25. 25.

    Xue, F. et al. Room‐temperature ferroelectricity in hexagonally layered α‐In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Google Scholar 

  26. 26.

    Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

    Google Scholar 

  27. 27.

    Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).

    Google Scholar 

  28. 28.

    Wan, S. et al. Nonvolatile ferroelectric memory effect in ultrathin α‐In2Se3. Adv. Funct. Mater. 29, 1808606 (2019).

    Google Scholar 

  29. 29.

    Wan, S. et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10, 14885–14892 (2018).

    Google Scholar 

  30. 30.

    Xue, F. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31, e1901300 (2019).

    Google Scholar 

  31. 31.

    Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Google Scholar 

  32. 32.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Google Scholar 

  33. 33.

    Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Google Scholar 

  34. 34.

    Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Google Scholar 

  35. 35.

    Maisonneuve, V., Evain, M., Payen, C., Cajipe, V. & Molinie, P. Room-temperature crystal structure of the layered phase CuIInIIIP2S6. J. Alloys Compd. 218, 157–164 (1995).

    Google Scholar 

  36. 36.

    Susner, M. A. et al. High-Tc layered ferrielectric crystals by coherent spinodal decomposition. ACS Nano 9, 12365–12373 (2015).

    Google Scholar 

  37. 37.

    Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Google Scholar 

  38. 38.

    Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).

    Google Scholar 

  39. 39.

    Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N. & Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018).

    Google Scholar 

  40. 40.

    Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Google Scholar 

  41. 41.

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Google Scholar 

  42. 42.

    Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Google Scholar 

  43. 43.

    Li, H. et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 11, 11714–11723 (2017).

    Google Scholar 

  44. 44.

    Sun, Y. et al. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater. 31, 1806562 (2019).

    Google Scholar 

  45. 45.

    Baeumer, C., Rogers, S. P., Xu, R., Martin, L. W. & Shim, M. Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. Nano Lett. 13, 1693–1698 (2013).

    Google Scholar 

  46. 46.

    Baeumer, C. et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 6, 6136 (2015).

    Google Scholar 

  47. 47.

    Hu, W. J., Wang, Z., Yu, W. & Wu, T. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 7, 10808 (2016).

    Google Scholar 

  48. 48.

    Jiang, J. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 3, e1700121 (2017).

    Google Scholar 

Download references


J.W., H.-Y.C. and H.W. acknowledge support from the Army Research Office Young Investigator Program (grant W911NF-18-1-0268) and the National Science Foundation (grant CCF-1618038). N.Y. and J.G. acknowledge support from the National Science Foundation (grants 1618762, 1610387 and 1904580). J.C. and X.L. acknowledge support from the Semiconductor Research Corporation (SRC).

Author information




H.W. conceived the project and led the overall research activities. J.W. and H.-Y.C. fabricated the vdW FTJ devices. J.W., H.-Y.C. and X.Y. performed the electrical measurements and data analysis. N.Y. and J.G. led the research in the theoretical modelling. J.C. and X.L. synthesized the materials. J.W. and F.L. characterized the materials and devices. Q.S. contributed to the formulation of the project idea. J.W., H.-Y.C. and H.W. co-wrote the manuscript with input and comments from all the authors.

Corresponding authors

Correspondence to Qibin Sun or Jing Guo or Han Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Notes 1–3 and refs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Chen, H., Yang, N. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat Electron 3, 466–472 (2020). https://doi.org/10.1038/s41928-020-0441-9

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing