Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Cars as a tool for monitoring and protecting biodiversity

Modern cars have an array of sensors that allow different objects to be recognized, including large and small animals. They thus have the potential to become a tool for monitoring biodiversity and improving driver safety. But to achieve this various challenges in computing, communications and privacy need to be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cars as a global network of moving sensors.

References

  1. Dulac, J. Global Land Transport Infrastructure Requirements: Estimating Road and Railway Infrastructure Capacity and Costs to 2050 (IEA, 2013); https://go.nature.com/2XQyOrq

  2. Van der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology (Wiley, 2015).

  3. González-Suárez, M., Zanchetta Ferreira, F. & Grilo, C. Glob. Ecol. Biogeogr. 27, 1093–1105 (2018).

    Article  Google Scholar 

  4. Gren, I.-M. & Jägerbrand, A. Transp, Res. D 70, 112–122 (2019).

    Google Scholar 

  5. Abra, F. D. et al. PLoS One 14, e0215152 (2019).

    Article  Google Scholar 

  6. Wilkins, D. C., Kockelman, K. M. & Jiang, N. Accid. Anal. Prev. 131, 157–170 (2019).

    Article  Google Scholar 

  7. Shilling, F., Waetjen, D., Harrold, K. & Farman, P. Impact of Wildlife-Vehicle Conflict on California Drivers and Animals (UC Davis, 2019); https://go.nature.com/3ckTFII

  8. Kranstauber, B. et al. Environ. Model. Softw. 26, 834–835 (2011).

    Article  Google Scholar 

  9. Flemons, P., Guralnick, R., Krieger, J., Ranipeta, A. & Neufeld, D. Ecol. Inform. 2, 49–60 (2007).

    Article  Google Scholar 

  10. Ahn, K. & Rakha, H. Transp. Res. D 13, 151–167 (2008).

    Article  Google Scholar 

  11. Massaro, E. et al. Proc. IEEE 105, 3–7 (2017).

  12. Apte, J. S. et al. Environ. Sci. Technol. 51, 6999–7008 (2017).

    Article  Google Scholar 

  13. Coutinho, R. W. L., Boukerche, A. & Loureiro, A. A. F. IEEE Commun. Mag. 56, 85–91 (2018).

    Article  Google Scholar 

  14. Mammeri, A., Zhou, D., Boukerche, A. & Almulla, M. In 2014 IEEE Int. Conference on Communications (ICC) 1854–1859 (2014); https://doi.org/10.1109/ICC.2014.6883593

  15. Sillero, N., Ribeiro, H., Franch, M., Silva, C. & Lopes, G. Eur. J. Wildlife Res. 64, 77 (2018).

    Article  Google Scholar 

  16. D’Amico, M., Périquet, S., Román, J. & Revilla, E. J. Appl. Ecol. 53, 181–190 (2016).

    Article  Google Scholar 

  17. Ascensão, F. et al. PLOS One 9, e103544 (2014).

    Article  Google Scholar 

  18. McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Ecology 89, 2712–2724 (2008).

    Article  Google Scholar 

  19. Elith, J. & Leathwick, J. R. Ann. Rev. Ecol. Evol. System. 40, 677–697 (2009).

    Article  Google Scholar 

  20. Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).

    Article  Google Scholar 

  21. Schneider, F. D. et al. Nat. Commun. 8, 1441 (2017).

    Article  Google Scholar 

  22. Timm, B. C., McGarigal, K. & Compton, B. W. Biol. Conserv. 136, 442–454 (2007).

    Article  Google Scholar 

  23. Baltensperger, A. P. & Joly, K. Mov. Ecol. 7, 18 (2019).

    Article  Google Scholar 

  24. Aloi, G. et al. J. Netw. Comp. App. 81, 74–84 (2017).

    Article  Google Scholar 

  25. Weber, R. H. Comput. Law Secur. Rev. 26, 23–30 (2010).

    Article  Google Scholar 

  26. Gross, M. A planet with two billion cars. Curr. Biol. 26, R307–R310 (2016).

    Article  Google Scholar 

  27. Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Environ. Res. Lett. 13, 064006 (2018).

    Article  Google Scholar 

  28. Ascensão, F. et al. Nat. Sustain. 1, 206–209 (2018).

    Article  Google Scholar 

  29. Gao, P., Kaas, H.-W., Mohr, D. & Wee, D. Automotive Revolution – Perspective Towards 2030 (McKinsey & Co., 2016); https://go.nature.com/3eDnC8c

Download references

Acknowledgements

We acknowledge M. D’Amico for comments and inputs on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ascensão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascensão, F., Branquinho, C. & Revilla, E. Cars as a tool for monitoring and protecting biodiversity. Nat Electron 3, 295–297 (2020). https://doi.org/10.1038/s41928-020-0430-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0430-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing