Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating

Abstract

Electrical control of magnetism in van der Waals ferromagnetic semiconductors is an important step in creating novel spintronic devices, capable of processing and storing information, with these materials. For practical devices, electrical control at or near room temperature is sought, but most layered ferromagnetic semiconductors exhibit Curie temperatures below 100 K. Here, we show that electrostatic gating of thin chromium germanium telluride (Cr2Ge2Te6) crystals can be used to modulate the magnetic phase transition and magnetic anisotropy of this layered ferromagnetic semiconductor and increase its Curie temperature. Using an electric double-layer transistor device, we observe ferromagnetism in the material at temperatures up to 200 K and find that its magnetic easy axis is in the in-plane direction, in contrast to the out-of-plane easy axis of undoped Cr2Ge2Te6. Our analysis suggests that heavy doping promotes a double-exchange mechanism that is mediated by free carriers, which dominates over the superexchange mechanism of the original insulating state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gate-dependent transport properties of a CGT electric double-layer transistor device.
Fig. 2: MR hysteresis.
Fig. 3: Angle dependence of MR.
Fig. 4: Carrier density dependence of ferromagnetism.

Similar content being viewed by others

Data availability

The data that support the plots within this Article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  Google Scholar 

  2. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  Google Scholar 

  3. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  4. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  Google Scholar 

  5. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  6. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  7. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  8. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  Google Scholar 

  9. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  10. Tsymbal, E. Y. & Žutić, I. Handbook of Spin Transport and Magnetism (CRC Press, 2011).

  11. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  Google Scholar 

  12. Ji, H. et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J. Appl. Phys. 114, 114907 (2013).

    Article  Google Scholar 

  13. Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).

    Article  Google Scholar 

  14. Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).

    Article  Google Scholar 

  15. Goodenough, J. B. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1 − xSrxCoO3 − λ. J. Phys. Chem. Solids 6, 287–297 (1958).

    Article  Google Scholar 

  16. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  Google Scholar 

  17. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  18. Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    Article  Google Scholar 

  19. Pu, J., Yomogida, Y., Liu, K.-K., Li, L.-J., Iwasa, Y. & Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  Google Scholar 

  20. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  21. Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article  Google Scholar 

  22. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2009).

    Article  Google Scholar 

  23. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  Google Scholar 

  24. Xing, W. et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 4, 024009 (2017).

    Article  Google Scholar 

  25. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  Google Scholar 

  26. Avsar, A., Ciarrocchi, A., Pizzochero, M., Unuchek, D., Yazyev, O. V. & Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).

    Article  Google Scholar 

  27. Kondorsky, E. On hysteresis in ferromagnetics. J. Phys. (USSR) II, 161 (1940).

    MATH  Google Scholar 

  28. Schumacher, F. On the modification of the Kondorsky function. J. Appl. Phys. 70, 3184–3187 (1991).

    Article  Google Scholar 

  29. Cowburn, R. P., Gray, S. J., Ferré, J., Bland, J. A. C. & Miltat, J. Magnetic switching and in‐plane uniaxial anisotropy in ultrathin Ag/Fe/Ag(100) epitaxial films. J. Appl. Phys. 78, 7210–7219 (1995).

    Article  Google Scholar 

  30. Pramanik, T. et al. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 437, 72–77 (2017).

    Article  Google Scholar 

  31. Li, J. et al. Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography. Sci. Rep. 7, 2837 (2017).

    Article  Google Scholar 

  32. Khan, S. et al. Spin dynamics study in layered van der Waals single-crystal Cr2Ge2Te6. Phys. Rev. B 100, 134437 (2019).

    Article  Google Scholar 

  33. Fang, Y., Wu, S., Zhu, Z.-Z. & Guo, G.-Y. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6. Phys. Rev. B 98, 125416 (2018).

    Article  Google Scholar 

  34. Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1951).

    Article  Google Scholar 

  35. Jonker, G. H. & Van Santen, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

    Article  Google Scholar 

  36. Tokura, Y. & Tomioka, Y. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999).

    Article  Google Scholar 

  37. Chu, L. et al. Charge transport in ion-gated mono-, bi- and trilayer MoS2 field effect transistors. Sci. Rep. 4, 7293 (2014).

    Article  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  41. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  Google Scholar 

  42. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

G.E. acknowledges the Singapore National Research Foundation for funding the research under its medium-sized centre programme. G.E. also acknowledges support from the Ministry of Education (MOE), Singapore, under AcRF Tier 2 (MOE2017-T2-1-134). H.K. acknowledges support from the Engineering and Physical Sciences Research Council through project EP/T006749/1. I.V. thanks J. Pu for assistance with ion gel preparation. F.Y.P. thanks S. Lei for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.A.V. and G.E. conceived the idea of the experiments. I.A.V. synthesized the CGT crystals and performed the transport measurements. H.C. and J.Z. conducted the first-principles calculations with input from Y.P.F. Data analysis and interpretations were carried out by H.K., I.A.V., G.E. and all other co-authors. I.A.V., G.E. and H.K. wrote the manuscript with input from the other co-authors.

Corresponding authors

Correspondence to Ivan A. Verzhbitskiy, Hidekazu Kurebayashi or Goki Eda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Angle dependence of MR at different temperatures and magnetic fields.

MR curves of the device #2 at VG = 3.7 V and T = 120 K (left panels) and 150 K (right panels). a, out-of-plane (γ = 90°) MR hysteresis. Unprocessed data are shown in the insets; b-d, angle-dependent MR curves for different planes as shown in the middle panels.

Extended Data Fig. 2 Reproducibility of the MR curves.

Multiple consecutive field-sweeps for T = 90 K and VG = 3.9 V (device #1).

Extended Data Fig. 3 In-plane MR hysteresis.

MR curves at different temperatures and VG = 3.1 V (device #1).

Extended Data Fig. 4 Gate-dependent ferromagnetism in device #2.

2D colour maps of \(\Delta {\mathrm{MR}} = \left| {{\mathrm{MR}}^ \uparrow \left( H \right) - {\mathrm{MR}}^ \downarrow \left( H \right)} \right|\) as a function of temperature and out-of-plane magnetic field for the device #2 at (a) VG = 2.7 V, (b) 2.8 V and (c) 3.7 V.

Extended Data Fig. 5 DFT projected density of states (pDOS) of CGT.

PDOS of (a-c) pristine (undoped) bulk CGT for d-orbitals of Cr, p-orbitals of Te and p-orbitals of Ge; (d-e) pDOS of Cr and Te in doped CGT (1.5\(e^ -\) per unit cell).

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Notes 1–5 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verzhbitskiy, I.A., Kurebayashi, H., Cheng, H. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat Electron 3, 460–465 (2020). https://doi.org/10.1038/s41928-020-0427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0427-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing