Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nonlocal spin Hall magnetoresistance in a platinum layer deposited on a magnon junction

Abstract

Magnetoresistance effects are used in a variety of devices including hard disk drives and magnetic random access memories. In particular, giant magnetoresistance and tunnelling magnetoresistance can be used to create spin valves and tunnel junctions in which the resistance depends on the relative magnetization orientations of two ferromagnetic conducting layers. Here, we report a magnetoresistance effect that occurs in a platinum layer deposited on a magnon junction consisting of two insulating magnetic yttrium iron garnet (YIG) layers separated by an antiferromagnetic nickel oxide spacer layer. The resistance of the platinum layer is found to depend on the magnetization of the YIG layer in direct contact with it (an effect known as spin Hall magnetoresistance), but also the magnetization of the adjacent YIG layer in the junction. The resistance of the platinum layer is higher when the two YIG layers are aligned antiparallel than when parallel. We assign this behaviour to a magnonic nonlocal spin Hall magnetoresistance in which spin-carrying magnon propagation across the junction affects spin accumulation at the metal interface and hence modulates the spin Hall magnetoresistance. The effect could be used to develop spintronic and magnonic devices that have spin transport properties controlled by an all-insulating magnon junction and are thus free from Joule heating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the YIG/NiO/YIG/Pt heterostructure and the MNSMR effect.
Fig. 2: Magnetic and SSE characteristics of the MJ.
Fig. 3: MNSMR of the MJ.

Similar content being viewed by others

Data availability

The data that support the plots within this paper including the main text and Supplementary Information and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  2. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  Google Scholar 

  3. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  Google Scholar 

  4. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  Google Scholar 

  5. Wood, R. Future hard disk drive systems. J. Magn. Magn. Mater. 321, 555–561 (2009).

    Article  Google Scholar 

  6. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

    Article  Google Scholar 

  7. Fuchs, G. D. et al. Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 85, 1205–1207 (2004).

    Article  Google Scholar 

  8. Cornelissen, L. J. et al. Nonlocal magnon–polaron transport in yttrium iron garnet. Phys. Rev. B 96, 104441 (2017).

    Article  Google Scholar 

  9. Nakata, K., Simon, P. & Loss, D. Spin currents and magnon dynamics in insulating magnets. J. Phys. D 50, 114004 (2017).

    Article  Google Scholar 

  10. Cornelissen, L. J. et al. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  11. Wu, H. et al. Observation of magnon-mediated electric current drag at room temperature. Phys. Rev. B 93, 060403 (2016).

    Article  Google Scholar 

  12. Li, J. et al. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt (Ta) trilayers. Nat. Commun. 7, 10858 (2016).

    Article  Google Scholar 

  13. Lin, W. W. & Chien, C. L. Electrical detection of spin backflow from an antiferromagnetic insulator/Y3Fe5O12 interface. Phys. Rev. Lett. 118, 067202 (2017).

    Article  Google Scholar 

  14. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  Google Scholar 

  15. Qiu, Z. et al. Spin colossal magnetoresistance in an antiferromagnetic insulator. Nat. Mater. 17, 577–580 (2018).

    Article  Google Scholar 

  16. Guo, C. Y. et al. Magnon valves based on YIG/NiO/YIG all-insulating magnon junctions. Phys. Rev. B 98, 134426 (2018).

    Article  Google Scholar 

  17. Chumak, A. V. et al. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  18. Wu, H. et al. Magnon valve effect between two magnetic insulators. Phys. Rev. Lett. 120, 097205 (2018).

    Article  Google Scholar 

  19. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    Article  Google Scholar 

  20. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  21. Cramer, J. et al. Magnon detection using a ferroic collinear multilayer spin valve. Nat. Commun. 9, 1089 (2018).

    Article  Google Scholar 

  22. Wright, K. Focus: a trio of magnon transistors. Physics 11, 23 (2018).

    Article  Google Scholar 

  23. Cornelissen, L. J., Liu, J., van Wees, B. J. & Duine, R. A. Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor. Phys. Rev. Lett. 120, 097702 (2018).

    Article  Google Scholar 

  24. Das, K. S., Liu, J., van Wees, B. J. & Vera-Marun, I. J. Efficient injection and detection of out-of-plane spins via the anomalous spin Hall effect in permalloy nanowires. Nano Lett. 18, 5633–5639 (2018).

    Article  Google Scholar 

  25. Das, K. S., Feringa, F., Middelkamp, M., van Wees, B. J. & Vera-Marun, I. J. Modulation of magnon spin transport in a magnetic gate transistor. Phys. Rev. B 101, 054436 (2020).

    Article  Google Scholar 

  26. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  Google Scholar 

  27. Zhang, S. F. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000).

    Article  Google Scholar 

  28. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Article  Google Scholar 

  29. Kim, J., Sheng, P., Takahashi, S., Mitani, S. & Hayashi, M. Spin Hall magnetoresistance in metallic bilayers. Phys. Rev. Lett. 116, 097201 (2016).

    Article  Google Scholar 

  30. Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016).

    Article  Google Scholar 

  31. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    Article  Google Scholar 

  32. Saglam, H. et al. Independence of spin–orbit torques from the exchange bias direction in Ni81Fe19/IrMn bilayers. Phys. Rev. B 98, 094407 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (MOST, grant nos 2017YFA0206200 and 2016YFA0300802) and the National Natural Science Foundation of China (NSFC, grant nos 51831012, 51620105004, 11974398, 51701203 and 11674373) and partially supported by the Strategic Priority Research Program (B) (grant no. XDB07030200), the International Partnership Program (grant no. 112111KYSB20170090) and the Key Research Program of Frontier Sciences (grant no. QYZDJ-SSW-SLH016) of the Chinese Academy of Sciences (CAS). C.H.W acknowledges financial support from the Youth Innovation Promotion Association, CAS (2020008). We also thank X.-G. Zhang at the University of Florida for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.F.H. led and was involved in all aspects of the project. C.H.W. and C.Y.G. are the first authors. C.Y.G., C.H.W., W.Q.H., M.K.Z. and Y.W.X. deposited stacks and fabricated devices. C.Y.G., C.H.W. and X.W. conducted magnetic and transport property measurements. C.H.W., Z.R.Y., S.Z. and P.T. contributed to modelling and theoretical analysis. C.H.W., S.Z. and X.F.H. wrote the paper. Z.R.Y., Y.Z.L. and Y.W.L. conducted the MuMax simulation. X.F.H. and C.H.W. supervised and designed the experiments. All authors contributed to data mining and analysis.

Corresponding author

Correspondence to X. F. Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Sections 1–8, Figs. 1–12 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C.Y., Wan, C.H., He, W.Q. et al. A nonlocal spin Hall magnetoresistance in a platinum layer deposited on a magnon junction. Nat Electron 3, 304–308 (2020). https://doi.org/10.1038/s41928-020-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0425-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing