Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations

Abstract

Mechanical sensing is a key functionality in soft electronics intended for applications in health monitoring, human–machine interactions and soft robotics. Current methods typically use intricate networks of sensors specific to one type of deformation and one point in space, which limits their sensing capabilities. An alternative approach to distributed sensing is electrical reflectometry, but it is challenging to build the necessary transmission lines out of soft materials. Here, we report the scalable fabrication of microstructured elastomeric fibres that integrate tens of liquid metal conductors and have the length and cross-sectional integrity necessary to successfully apply time-domain reflectometry. Our soft transmission lines allow the detection of the mode, magnitude and position of multiple simultaneous pressing and stretching events. Furthermore, as a result of the dynamically responsive conductors, the pressure sensitivity is improved by a factor of 200 compared to rigid line probes. By integrating a single soft transmission line with a single interface port into a larger fabric, our technique can be used to create an electronic textile that can decipher convoluted mechanical stimulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication and structure of the soft transmission lines.
Fig. 2: Time-domain reflectometry set-up and evaluation of transmission line performance.
Fig. 3: Pressing on soft transmission lines.
Fig. 4: Stretching of soft transmission lines.
Fig. 5: Electronic textile for multiplexed deformation sensing.

Similar content being viewed by others

Data availability

Source data for Figs. 1–5 are available with the paper. The datasets generated and analysed within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code for the real-time data processing of the electronic textile and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  2. Liu, J. J. et al. BreathSens: a continuous on-bed respiratory monitoring system with torso localization using an unobtrusive pressure sensing array. IEEE J. Biomed. Health Inform. 19, 1682–1688 (2015).

    Article  Google Scholar 

  3. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  4. Wang, X., Gu, Y., Xiong, Z., Cui, Z. & Zhang, T. Silk-molded flexible, ultrasensitive and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26, 1336–1342 (2014).

    Article  Google Scholar 

  5. Gerratt, A. P., Michaud, H. O. & Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287–2295 (2015).

    Article  Google Scholar 

  6. Lin, L. et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7, 8266–8274 (2013).

    Article  Google Scholar 

  7. Jung, S. et al. Wearable fall detector using integrated sensors and energy devices. Sci. Rep. 5, 1–9 (2015).

    Google Scholar 

  8. Welch, H. & Lee A review on measuring affect with practical sensors to monitor driver behavior. Safety 5, 72 (2019).

    Article  Google Scholar 

  9. Zhao, H., O’Brien, K., Li, S. & Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1, eaai7529 (2016).

    Article  Google Scholar 

  10. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article  Google Scholar 

  11. Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

    Article  Google Scholar 

  12. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    Article  Google Scholar 

  13. Park, J. et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8, 4689–4697 (2014).

    Article  Google Scholar 

  14. Atalay, A. et al. Batch fabrication of customizable silicone–textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2, 1700136 (2017).

    Article  Google Scholar 

  15. Liu, M. et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017).

    Article  Google Scholar 

  16. Atalay, O., Kennon, W. R. & Demirok, E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sens. J. 15, 110–122 (2015).

    Article  Google Scholar 

  17. Rothmaier, M., Luong, M. P. & Clemens, F. Textile pressure sensor made of flexible plastic optical fibers. Sensors 8, 4318–4329 (2008).

    Article  Google Scholar 

  18. Nguyen-Dang, T. et al. Multi-material micro-electromechanical fibers with bendable functional domains. J. Phys. D 50, 144001 (2017).

    Article  Google Scholar 

  19. Leber, A. et al. Compressible and electrically conducting fibers for large-area sensing of pressures. Adv. Funct. Mater. 30, 1904274 (2020).

    Article  Google Scholar 

  20. Xu, P. A. et al. Optical lace for synthetic afferent neural networks. Sci. Robot. 4, eaaw6304 (2019).

    Article  Google Scholar 

  21. Leber, A., Cholst, B., Sandt, J., Vogel, N. & Kolle, M. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv. Funct. Mater. 29, 1802629 (2018).

    Article  Google Scholar 

  22. Cooper, C. B. et al. Stretchable capacitive sensors of torsion, strain and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27, 1605630 (2017).

    Article  Google Scholar 

  23. Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019).

    Article  Google Scholar 

  24. Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today (in the press); https://doi.org/10.1016/j.mattod.2019.11.006

  25. Furse, C., Chung, Y. C., Lo, C. & Pendayala, P. A critical comparison of reflectometry methods for location of wiring faults. Smart Struct. Syst. 2, 25–46 (2006).

    Article  Google Scholar 

  26. Smail, M. K., Pichon, L., Olivas, M., Auzanneau, F. & Lambert, M. Detection of defects in wiring networks using time domain reflectometry. IEEE Trans. Magn. 46, 2998–3001 (2010).

    Article  Google Scholar 

  27. Zhou, Z., Jiao, T., Zhao, P., Liu, J. & Xiao, H. Development of a distributed crack sensor using coaxial cable. Sensors 16, 1198 (2016).

    Article  Google Scholar 

  28. Dowding, C. H., Su, M. B. & O’Connors, K. Principles of time domain reflectometometry applied to measurement of rock mass deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 287–297 (1988).

    Article  Google Scholar 

  29. Dominauskas, A., Heider, D. & Gillespie, J. W. Electric time-domain reflectometry distributed flow sensor. Compos. Part A Appl. Sci. Manuf. 38, 138–146 (2007).

    Article  Google Scholar 

  30. Roelvink, J., Trabelsi, S. & Nelson, S. O. A planar transmission-line sensor for measuring the microwave permittivity of liquid and semisolid biological materials. IEEE Trans. Instrum. Meas. 62, 2974–2982 (2013).

    Article  Google Scholar 

  31. Tang, L., Tao, X. & Choy, C. L. Possibility of using a coaxial cable as a distributed strain sensor by time domain reflectometry. Smart Mater. Struct. 10, 221–228 (2001).

    Article  Google Scholar 

  32. Lin, M. W., Thaduri, J. & Abatan, A. O. Development of an electrical time domain reflectometry (ETDR) distributed strain sensor. Meas. Sci. Technol. 16, 1495–1505 (2005).

    Article  Google Scholar 

  33. Wimmer, R. & Baudisch, P. Modular and deformable touch-sensitive surfaces based on time domain reflectometry. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST'11) 517–526 (ACM, 2011); https://doi.org/10.1145/2047196.2047264

  34. Jung, Y. H. et al. Stretchable twisted-pair transmission lines for microwave frequency wearable electronics. Adv. Funct. Mater. 26, 4635–4642 (2016).

    Article  Google Scholar 

  35. Xu, D., Tairych, A. & Anderson, I. A. Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard. Ptoc. SPIE 9430, 943025 (2015).

    Google Scholar 

  36. Hayes, G. J. et al. Microfluidic coaxial transmission line and phase shifter. Microw. Opt. Technol. Lett. 56, 1459–1462 (2014).

    Article  Google Scholar 

  37. Nguyen-Dang, T. et al. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv. Funct. Mater. 27, 1605935 (2017).

    Article  Google Scholar 

  38. Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018).

    Article  Google Scholar 

  39. Zhou, T. et al. Molecular chain movements and transitions of SEBS above room temperature studied by moving-window two-dimensional correlation infrared spectroscopy. Macromolecules 40, 9009–9017 (2007).

    Article  Google Scholar 

  40. Yeo, J. C. et al. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability and sensitivity. ACS Sens. 1, 543–551 (2016).

    Article  Google Scholar 

  41. Park, Y.-L., Majidi, C., Kramer, R., Bérard, P. & Wood, R. J. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029 (2010).

    Article  Google Scholar 

  42. Hammond, F. L., Kramer, R. K., Wan, Q., Howe, R. D. & Wood, R. J. Soft tactile sensor arrays for force feedback in micromanipulation. IEEE Sens. J. 14, 1443–1452 (2014).

    Article  Google Scholar 

  43. Majidi, C., Kramer, R. & Wood, R. J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011).

    Article  Google Scholar 

  44. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  45. Cataldo, A, Benedetto, De, E. & Cannazza, G. Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. 93 (Springer: 2011).

  46. Zandvakili, M., Honari, M. M., Mousavi, P. & Sameoto, D. Gecko-gaskets for multilayer, complex and stretchable liquid metal microwave circuits and antennas. Adv. Mater. Technol. 2, 1700144 (2017).

    Article  Google Scholar 

  47. Mohsen-Nia, M., Amiri, H. & Jazi, B. Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J. Solut. Chem. 39, 701–708 (2010).

    Article  Google Scholar 

  48. Taylor, G. F. A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23, 655–660 (1924).

    Article  Google Scholar 

  49. Rogers, J. A., Ghaffari, R. & Kim, D.-H. Stretchable Bioelectronics for Medical Devices and Systems (Springer, 2016).

  50. Pozar, D. M. Microwave Engineering (Wiley, 2012).

  51. Kaiser, K. L. Transmission Lines, Matching and Crosstalk (Taylor & Francis, 2006).

  52. Collier, R. J. Transmission Lines: Equivalent Circuits, Electromagnetic Theory and Photons (Cambridge Univ. Press, 2013).

  53. Overvelde, J. T. B. et al. Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mech. Lett. 1, 42–46 (2014).

    Article  Google Scholar 

  54. Sorin, F., Lestoquoy, G., Danto, S., Joannopoulos, J. D. & Fink, Y. Resolving optical illumination distributions along an axially symmetric photodetecting fiber. Opt. Express 18, 24264–24275 (2010).

    Article  Google Scholar 

  55. Wadell, B. C. Transmission Line Design Handbook (Artech House, 1991).

  56. Wagenaars, P., A. F. Wouters, P., J. M. Van Der Wielen, P. & Steennis, E. Approximation of transmission line parameters of single-core and three-core XLPE cables. IEEE Trans. Dielectr. Electr. Insul. 17, 106–115 (2010).

    Article  Google Scholar 

  57. Kharraz, M. A. O. et al. Experimental characterization of outdoor low voltage cables for narrowband power line communication. In Proceedings of 2016 International Symposium on Power Line Communications and its Applications (ISPLC) 138–143 (IEEE, 2016); https://doi.org/10.1109/ISPLC.2016.7476267

Download references

Acknowledgements

We thank L. Riemer, Z. Wang, H. Karami and F. Rachidi-Haeri for experimental support. We acknowledge Kraton Polymers for providing the material SEBS. We also acknowledge the European Research Council (ERC Starting Grant 679211 ‘FLOWTONICS’) for funding this project.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and F.S. conceived the idea. A.L. and N.B. designed and fabricated the soft transmission lines. A.L., C.D., R.C. and T.D.G. designed and carried out the experiments to characterize the lines. A.L. analysed the data and the results were discussed with all authors. A.L. and R.C. designed and fabricated the electronic textile, which was tested with the help of C.D. A.L. and F.S. wrote the manuscript, and all authors contributed to the revisions.

Corresponding author

Correspondence to Fabien Sorin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6 and Figs. 1–17.

Supplementary Video 1

Demonstration of pressing on electronic textile.

Supplementary Video 2

Demonstration of stretching and pressing on electronic textile.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leber, A., Dong, C., Chandran, R. et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 3, 316–326 (2020). https://doi.org/10.1038/s41928-020-0415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0415-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing