Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconfigurable frequency multiplication with a ferroelectric transistor


Frequency multiplication is essential in wireless communication systems, where stable high-frequency oscillations are required. However, multipliers typically employ power- and area-hungry filtering and amplification circuits. Here, we show that a single ferroelectric field-effect transistor, made from ferroelectric hafnium oxide, can be used as a full-wave rectifier and frequency doubler. This is achieved by using the parabolic shape of the transistor’s transfer characteristics, which can be tailored by accurately tuning the partial polarization switching and the band-to-band tunnelling drain current. Due to the reversible polarization switching, our approach is fully reconfigurable, allowing either multiplication or simple transmission of the input frequency to be activated within a single ferroelectric transistor. With our devices, we also implement two practical cases of the frequency modulation scheme without any additional filtering circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partial polarization switching in FeFETs.
Fig. 2: Arbitrary tuning of the shape and symmetry of the FeFET transfer characteristics.
Fig. 3: Frequency doubling with a FeFET.
Fig. 4: Reliability of FeFET-based frequency multiplication.
Fig. 5: Experimental implementation of binary FSK.
Fig. 6: Binary FSK by PRG/ERS operations.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Camargo, E. Design of FET Frequency Multipliers and Harmonic Oscillators (Artech House, 1998).

  2. Räisänen, A. V. Frequency multipliers for millimeter and submillimeter wavelengths. Proc. IEEE 80, 1842–1852 (1992).

    Article  Google Scholar 

  3. Tolmunen, T. J. & Frerking, M. A. Theoretical performance of novel multipliers at millimeter and submillimeter wavelengths. Int. J. Infrared Millimeter Waves 12, 1111–1133 (1991).

    Article  Google Scholar 

  4. Xu, H. Q. Electrical properties of three-terminal ballistic junctions. Appl. Phys. Lett. 78, 2064–2066 (2001).

    Article  Google Scholar 

  5. Shorubalko, I. et al. A novel frequency-multiplication device based on three-terminal ballistic junction. IEEE Electron Device Lett. 23, 377–379 (2002).

    Article  Google Scholar 

  6. Wang, H., Nezich, D., Kong, J. & Palacios, T. Graphene frequency multipliers. IEEE Electron Device Lett. 30, 547–549 (2009).

    Article  Google Scholar 

  7. Wang, Z. et al. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl. Phys. Lett. 96, 173104 (2010).

    Article  Google Scholar 

  8. Wang, Z. et al. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler. Nano Lett. 10, 3648–3655 (2010).

    Article  Google Scholar 

  9. Wang, H., Hsu, A., Wu, J., Kong, J. & Palacios, T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31, 906–908 (2010).

    Article  Google Scholar 

  10. Yang, X., Liu, G., Baladin, A. A. & Mohanram, K. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano 4, 5532–5538 (2010).

    Article  Google Scholar 

  11. Miller, S. L. & McWhorter, P. J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999 (1992).

    Article  Google Scholar 

  12. Sakai, S. & Takahashi, M. Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 3, 4950–4964 (2010).

    Article  Google Scholar 

  13. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  Google Scholar 

  14. Tian, X. et al. Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl. Phys. Lett. 112, 102902 (2018).

    Article  Google Scholar 

  15. Mulaosmanovic, H. et al. Switching kinetics in nanoscale ferroelectric field-effect transistors based on hafnium oxide. ACS Appl. Mater. Interfaces 9, 3792–3798 (2017).

    Article  Google Scholar 

  16. Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).

    Article  Google Scholar 

  17. Trentzsch, M. et al. A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs. In Proc. 2016 IEEE International Electron Devices Meeting 11.5.1–11.5.4 (IEEE, 2016).

  18. Dünkel, S. et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. In Proc. 2017 IEEE International Electron Devices Meeting 19.7.1–19.7.4 (IEEE, 2017).

  19. Mulaosmanovic, H., Mikolajick, T. & Slesazeck, S. Accumulative polarization reversal in nanoscale ferroelectric transistors. ACS Appl. Mater. Interfaces 10, 23997–24002 (2018).

    Article  Google Scholar 

  20. Mulaosmanovic, H., Chicca, E., Bertele, M., Mikolajick, T. & Slesazeck, S. Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale 10, 21755–21763 (2018).

    Article  Google Scholar 

  21. Nishitani, Y., Kaneko, Y., Ueda, M., Morie, T. & Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108 (2012).

    Article  Google Scholar 

  22. Mulaosmanovic, H. et al. Novel ferroelectric FET based synapse for neuromorphic systems. In Proc. IEEE 2017 Symposium on VLSI Technology T176–T177 (IEEE, 2017).

  23. Mulaosmanovic, H., Mikolajick, T. & Slesazeck, S. Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 39, 135–138 (2018).

    Article  Google Scholar 

  24. Breyer, E. T., Mulaosmanovic, H., Mikolajick, T. & Slesazeck, S. Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. In Proceedings of the 2017 IEEE International Electron Devices Meeting 28.5.1–28.5.4 (IEEE, 2017).

  25. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  Google Scholar 

  26. Chen, J., Chan, T. Y., Chen, I. C., Ko, P. K. & Hu, C. Subbreakdown drain leakage current in MOSFET. IEEE Electron Device Lett. 8, 515–517 (1987).

    Article  Google Scholar 

  27. Sakai, S. & Ilangovan, R. Metal–ferroelectric–insulator–semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004).

    Article  Google Scholar 

  28. Tanaka, H. et al. Bit cost scalable technology with punch and plug process for ultra high density flash memory. In Proceedings of IEEE 2007 Symposium on VLSI Technology, 14–15 (IEEE, 2007).

  29. Ganjipour, B. et al. Electrical properties of GaSb/InAsSb core/shell nanowires. Nanotechnology 25, 425201 (2014).

    Article  Google Scholar 

  30. Simon, M. et al. Top-down technology for reconfigurable nanowire FETs with symmetric on-currents. IEEE Trans. Nanotechnol. 16, 812–819 (2017).

    Article  Google Scholar 

  31. Mulaosmanovic, H., Breyer, E. T., Mikolajick, T. & Slesazeck, S. Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance. IEEE Trans. Electron Devices 66, 3828–3833 (2019).

    Article  Google Scholar 

  32. Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004).

    Article  Google Scholar 

  33. Krivokapic, Z. et al. 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. In Proceedings of 2017 IEEE International Electron Devices Meeting 15.1.1–15.1.4 (IEEE, 2017).

  34. Seo, M. et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445–1448 (2018).

    Article  Google Scholar 

  35. Florent, K. et al. Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory. In Proceedings of IEEE 2018 International Electron Devices Meeting 2.5.1–2.5.4 (IEEE, 2018).

  36. Singh, J. et al. 14 nm FinFET technology for analog and RF applications. IEEE Trans. Electron Devices 65, 31–37 (2017).

    Article  Google Scholar 

  37. Lee, S. et al. Record RF performance of 45 nm SOI CMOS technology. In Proceedings of IEEE 2007 International Electron Devices Meeting 255–258 (IEEE, 2007).

Download references


We thank S. Dünkel, S. Beyer, M. Trentzsch and other colleagues from GLOBALFOUNDRIES Fab1 LLC & Co. KG, Dresden for sample fabrication, support and discussions. We also acknowledge V. Havel from NaMLab gGmbH for useful suggestions regarding the measurement set-up. This work was supported financially by the European Fund for Regional Development (EFRD), Europe Supports Saxony and by funds released by the delegates of the Saxon State Parliament.

Author information

Authors and Affiliations



H.M. conceived, designed and performed the experiments, analysed the data and wrote the manuscript. All authors contributed to discussing the data and revising the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Halid Mulaosmanovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulaosmanovic, H., Breyer, E.T., Mikolajick, T. et al. Reconfigurable frequency multiplication with a ferroelectric transistor. Nat Electron 3, 391–397 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing