Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-reciprocal electronics based on temporal modulation


In general, reciprocity requires that signals travel in the same manner in both forward and reverse directions. It governs the behaviour of the majority of electronic circuits and components, imposing severe restrictions on how they operate. Components that violate reciprocity, such as gyrators, isolators and circulators, are, however, of use in many different electronic applications. Non-reciprocal electronic components have typically been implemented using ferrites, but such magnetic materials cannot be integrated in modern semiconductor fabrication processes and magnetic non-reciprocal components remain bulky and expensive. Creating non-reciprocal components without the use of magnetic materials has a long history, but has recently been reinvigorated due to advancements in semiconductor technology. Here we review the development of non-reciprocal devices and the development of non-magnetic non-reciprocal electronics, focusing on devices based on temporal modulation, which arguably exhibit the greatest potential. We consider approaches based on temporal modulation of permittivity and conductivity, as well as hybrid acoustic–electronic components, which have applications including high-power transmitters for communications, simultaneous transmit and receive radars, and full-duplex wireless radios. We also explore superconducting non-reciprocal components based on temporal modulation of permeability for potential applications in quantum computing and consider the key future challenges in the field.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Non-reciprocity based on active transistors or nonlinearity.
Fig. 2: Non-reciprocity based on temporal modulation of permittivity or capacitance.
Fig. 3: Non-reciprocity through temporal conductivity modulation on semiconductor substrates.
Fig. 4: Non-reciprocity in hybrid electro-acoustic devices.
Fig. 5: Non-reciprocity through time-variance at cryogenic temperatures targeting quantum computing applications.


  1. 1.

    Cannell, D. M. George Green: Mathematician and Physicist 1793–1841: The background to his life and work. 2nd edn, 190–192 (Society for Industrial and Applied Mathematics, 2001).

  2. 2.

    Rayleigh, J. W. S. B. Theory of Sound. 1st edn, Vol. 1 Ch. V. (Macmillan and Co., 1896).

  3. 3.

    Helmholtz, H. On the physical significance of the principle of least action. J. Reine Angew. Math. 100, 217–222 (1886).

    MathSciNet  Google Scholar 

  4. 4.

    Lorentz, H. A. Het theorema van Poynting over de energie in het electromagnetisch veld en een paar algemeene stellingen over de voortplanting van het licht. In Verslagen der Afdeeling Natuurkunde van de Koninklijke Akademie van Wetenschappen 4, 176–187 (1895).

    MATH  Google Scholar 

  5. 5.

    Carson, J. R. Reciprocal theorems in radio communication. Proc. IRE 17, 952–956 (1929).

    Article  Google Scholar 

  6. 6.

    Ballantine, S. Reciprocity in electromagnetic, mechanical, acoustical, and interconnected systems. Proc. IRE 17, 927–951 (1929).

    Article  Google Scholar 

  7. 7.

    Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev 37, 405–426 (1931).

    MATH  Article  Google Scholar 

  8. 8.

    Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945).

    Article  Google Scholar 

  9. 9.

    De Hoop, A. T. A reciprocity relation between the transmitting and the receiving properties of an antenna. App. Sci. Res 19, 90–96 (1968).

    Article  Google Scholar 

  10. 10.

    Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon 7, 579–582 (2013).

    Article  Google Scholar 

  11. 11.

    Fan, S. et al. Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’. Science 335, 38–38 (2012).

    Google Scholar 

  12. 12.

    Tellegen, D. The gyrator, a new electric network element. Philips Res. Rep 3, 81–101 (1948).

    MathSciNet  Google Scholar 

  13. 13.

    Hogan, C. L. The ferromagnetic Faraday effect at microwave frequencies and its applications: the microwave gyrator. Bell Syst. Tech. J 31, 1–31 (1952).

    Article  Google Scholar 

  14. 14.

    Gardner, D. S. et al. Review of on-chip inductor structures with magnetic films. IEEE Trans. Magn. 45, 4760–4766 (2009).

    Article  Google Scholar 

  15. 15.

    Zhou, J. et al. Integrated full duplex radios. IEEE Commun. Mag. 55, 142–151 (2017).

    Article  Google Scholar 

  16. 16.

    van Liempd, B. et al. A +70-dBm IIP3 electrical-balance duplexer for highly integrated tunable front-ends. IEEE Trans. Microw. Theory Techn 64, 4274–4286 (2016).

    Article  Google Scholar 

  17. 17.

    Chapman, B. J. et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits. Phy. Rev. X 7, 041043 (2017).

    Google Scholar 

  18. 18.

    JQL Electronics. Accessed on: 2020. [Online]. Available:

  19. 19.

    Reiskarimian, N., Baraani Dastjerdi, M., Zhou, J. & Krishnaswamy, H. Analysis and design of commutation-based circulator-receivers for integrated full-duplex wireless. IEEE J. Solid State Circ 53, 2190–2201 (2018).

    Article  Google Scholar 

  20. 20.

    Nagulu, A. & Krishnaswamy, H. Non-magnetic CMOS switched-transmission-line circulators with high power handling and antenna balancing: theory and implementation. IEEE J. Solid State Circ 54, 1288–1303 (2019).

    Article  Google Scholar 

  21. 21.

    Dinc, T. et al. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 8, 795 (2017).

    Article  Google Scholar 

  22. 22.

    Nagulu, A. et al. Nonreciprocal components based on switched transmission lines. IEEE Trans. Microw. Theory Techn 66, 4706–4725 (2018).

    Google Scholar 

  23. 23.

    Biedka, M. M., Zhu, R., Xu, Q. M. & Wang, Y. E. Ultra-wide band non-reciprocity through sequentially-switched delay lines. Sci. Rep 7, 40014 (2017).

    Article  Google Scholar 

  24. 24.

    Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 7, 11217 (2016).

    Article  Google Scholar 

  25. 25.

    Tanaka, S., Shimomura, N. & Ohtake, K. Active circulators–the realization of circulators using transistors. Proc. IEEE 53, 260–267 (1965).

    Article  Google Scholar 

  26. 26.

    Mung, S. W. & Chan, W. S. The challenge of active circulators: design and optimization in future wireless communication. IEEE Microw. Mag. 20, 55–66 (2019).

    Article  Google Scholar 

  27. 27.

    Kodera, T., Sounas, D. L. & Caloz, C. Magnetless nonreciprocal metamaterial (MNM). technology: application to microwave components. IEEE Trans. Microw. Theory Techn 61, 1030–1042 (2013).

    MATH  Google Scholar 

  28. 28.

    Carchon, G. & Nanwelaers, B. Power and noise limitations of active circulators. IEEE Trans. Microw. Theory Techn 48, 316–319 (2000).

    Article  Google Scholar 

  29. 29.

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys 10, 394–398 (2014).

    Article  Google Scholar 

  30. 30.

    Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  Google Scholar 

  31. 31.

    Nazari, F. et al. Optical isolation via PT-symmetric nonlinear Fano resonances. Opt. Express 22, 9574–9584 (2014).

    Article  Google Scholar 

  32. 32.

    Mahmoud, A. M., Arthur, R. D. & Engheta, N. All-passive nonreciprocal metastructure. Nat. Commun. 6, 8359 (2015).

    Article  Google Scholar 

  33. 33.

    Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Elec 1, 113 (2018).

    Article  Google Scholar 

  34. 34.

    D’Aguanno, G., Sounas, D. L. & Alù, A. Nonlinearity-based circulator. Appl. Phys. Lett. 114, 181102 (2019).

    Article  Google Scholar 

  35. 35.

    Hadad, Y., Soric, J. C., Khanikaev, A. B. & Alù, A. Self-induced topological protection in nonlinear circuit arrays. Nat. Elec 1, 178–182 (2018).

    Article  Google Scholar 

  36. 36.

    Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon 9, 388–392 (2015).

    Article  Google Scholar 

  37. 37.

    Sounas, D. L. & Alù, A. Nonreciprocity Based on Nonlinear Resonances. IEEE Antenn. Propag. Lett 17, 1958–1962 (2018).

    Article  Google Scholar 

  38. 38.

    Reed, E. D. The variable-capacitance parametric amplifier. IRE Trans. Electron. Devices 6, 216–224 (1959).

    Article  Google Scholar 

  39. 39.

    Kamal, A. A parametric device as a nonreciprocal element. Proc. IRE 48, 1424–1430 (1960).

    Article  Google Scholar 

  40. 40.

    Baldwin, L. Nonreciprocal parametric amplifier circuits. Proc. IRE 49, 1075 (1961).

    Article  Google Scholar 

  41. 41.

    Hamasaki, J. A theory of a unilateral parametric amplifier using two diodes. Bell Syst. Tech. J 43, 1123–1147 (1964).

    Article  Google Scholar 

  42. 42.

    Galland, C., Ding, R., Harris, N. C., Baehr-Jones, T. & Hochberg, M. Broadband on-chip optical non-reciprocity using phase modulators. Opt. Express 21, 14500–14511 (2013).

    Article  Google Scholar 

  43. 43.

    Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

    Article  Google Scholar 

  44. 44.

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  Google Scholar 

  45. 45.

    Kang, M., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon 5, 549–553 (2011).

    Article  Google Scholar 

  46. 46.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon 3, 91–94 (2008).

    Article  Google Scholar 

  47. 47.

    Qin, S., Xu, Q. & Wang, Y. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Techn 62, 2260–2272 (2014).

    Article  Google Scholar 

  48. 48.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    Article  Google Scholar 

  49. 49.

    Sounas, D. L. & Alù, A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon 1, 198–204 (2014).

    Article  Google Scholar 

  50. 50.

    Estep, N. A., Sounas, D. L., Soric, J. & Alù, A. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys 10, 923–927 (2014).

    Article  Google Scholar 

  51. 51.

    Kord, A., Sounas, D. L. & Alù, A. Pseudo-linear time-invariant magnetless circulators based on differential spatiotemporal modulation of resonant junctions. IEEE Trans. Microw. Theory Tech 66, 2731–2745 (2018).

    Article  Google Scholar 

  52. 52.

    Kord, A., Tymchenko, M., Sounas, D. L., Krishnaswamy, H. & Alù, A. CMOS integrated magnetless circulators based on spatiotemporal modulation angular-momentum biasing. IEEE Trans. Microw. Theory Tech 67, 2649–2662 (2019).

    Article  Google Scholar 

  53. 53.

    Tyagi, S. et al. An advanced low power, high performance, strained channel 65nm technology. In 2005 IEEE Int. Electron Devices Meet. Tech. Digest 245–247 (IEEE, 2005).

  54. 54.

    Mohr, R. J. A new nonreciprocal transmission line device. Proc. IEEE 52, 612 (1964).

    Article  Google Scholar 

  55. 55.

    Ghaffari, A., Klumperink, E. A. M., Soer, M. C. M. & Nauta, B. Tunable high-Q N-path band-pass filters: modeling and verification. IEEE J. Solid State Circ 46, 998–1010 (2011).

    Article  Google Scholar 

  56. 56.

    Busignies, H. & Dishal, M. Some relations between speed of indication, bandwidth, and signal-to-random-noise ratio in radio navigation and direction finding. Proc. IRE 37, 478–488 (1949).

    Article  Google Scholar 

  57. 57.

    LePage, W. R., Cahn, C. R. & Brown, J. S. Analysis of a comb filter using synchronously commutated capacitors. Trans. Am. Inst. Electric. Eng. I 72, 63–68 (1953).

    Google Scholar 

  58. 58.

    Nagulu, A. & Krishnaswamy, H. Non-magnetic 60GHz SOI CMOS circulator based on loss/dispersion-engineered switched bandpass filters. In 2019 IEEE Int. Solid State Circuits Conf. (ISSCC) 446–448 (IEEE, 2019).

  59. 59.

    Lu, R., Krol, J., Gao, L. & Gong, S. Frequency independent framework for synthesis of programmable non-reciprocal networks. Sci. Rep 8, 14655 (2018).

    Article  Google Scholar 

  60. 60.

    Torunbalci, M. M., Odelberg, T. J., Sridaran, S., Ruby, R. C. & Bhave, S. A. An FBAR circulator. IEEE Microw. Compon. Lett 28, 395–397 (2018).

    Article  Google Scholar 

  61. 61.

    Yu, Y. et al. Highly-linear magnet-free microelectromechanical circulators. IEEE J. Microelectromechanical Systems 28, 933–940 (2019).

    Article  Google Scholar 

  62. 62.

    Yu, Y. et al. Magnetic-free radio frequency circulator based on spatiotemporal commutation of MEMS resonators. In Proc. IEEE Micro Electro Mech. Syst. (MEMS) 154–157 (IEEE, 2018).

  63. 63.

    Xu, C. & Piazza, G. Magnet-less circulator using AlN mems filters and CMOS RF switches. J. Microelectromech. Syst 28, 409–418 (2019).

    Article  Google Scholar 

  64. 64.

    Bahamonde, J., Kymissis, I., Alù, A. & Krishnaswamy, H. 1.95-GHz circulator based on a time-modulated electro-acoustic gyrator. In Proc. IEEE Int. Symp. Antennas and Propagation and USNC-URSI Radio (IEEE, 2018).

  65. 65.

    Ranzani, L. & Aumentado, J. Circulators at the quantum limit: recent realizations of quantum-limited superconducting circulators and related approaches. IEEE Microw. Mag. 20, 112–122 (2019).

  66. 66.

    Castellanos-Beltran, M. A. & Lehnert, K. W. Widely tunable parametric amplifier based on superconducting quantum interference device array resonator. Appl. Phys. Lett. 91, 083509 (2007).

    Article  Google Scholar 

  67. 67.

    Josephson, B. D. Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962).

    MATH  Article  Google Scholar 

  68. 68.

    Anderson, P. W. & Rowell, J. M. Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. 10, 230–232 (1963).

    Article  Google Scholar 

  69. 69.

    Abdo, B., Brink, M. & Chow, J. M. Gyrator operation using Josephson mixers. Phys. Rev. Appl 8, 034009 (2017).

    Article  Google Scholar 

  70. 70.

    Abdo, B., Kamal, A. & Devoret, M. H. Nondegenerate three-wave mixing with the Josephson ring modulator. Phys. Rev. B 87, 014508 (2013).

    Article  Google Scholar 

  71. 71.

    Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl 7, 024028 (2017).

    Article  Google Scholar 

  72. 72.

    Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

    Google Scholar 

  73. 73.

    Levy, C. S., Asbeck, P. M. & Buckwalter, J. F. A CMOS SOI stacked shunt switch with sub-500ps time constant and 19-Vpp breakdown. In 2013 IEEE Compound Semiconductor Intg. Circuit Symp. (CSICS) 1-4 (IEEE, 2013).

  74. 74.

    Hill, C., Levy, C. S., AlShammary, H., Hamza, A. & Buckwalter, J. F. RF watt-level low-insertion-loss high-bandwidth SOI CMOS switches. IEEE Trans. Microw. Theory Tech. 66, 5724–5736 (2018).

    Article  Google Scholar 

  75. 75.

    Kazior, T.E. et al. High performance mixed signal and RF circuits enabled by the direct monolithic heterogeneous integration of GaN HEMTs and Si CMOS on a silicon substrate. In 2011 IEEE Compound Semiconductor Int. Circuit Symp. (CSICS), 1-4 (IEEE,2011).

  76. 76.

    Baraani Dastjerdi, M., Reiskarimian, N., Chen, T., Zussman, G. & Krishnaswamy, H. Full duplex circulator-receiver phased array employing self-interference cancellation via beamforming. 2018 IEEE Radio Freq. Int. Circuits Symp. (RFIC) 108–111 (IEEE, 2018).

  77. 77.

    Baraani Dastjerdi, M., Jain, S., Reiskarimian, N., Natarajan, A. & Krishnaswamy, H. Analysis and design of a full-duplex two-element MIMO circulator-receiver with high TX power handling exploiting MIMO RF and shared-delay baseband self-interference cancellation. IEEE J. Solid State Circ 54, 3525–3540 (2019).

    Article  Google Scholar 

  78. 78.

    Serrano, D. C. et al. Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Ant. Wireless Prop. Lett 15, 1529–1532 (2016).

    Article  Google Scholar 

  79. 79.

    Hadad, Y., Soric, J. C. & Alù, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    Article  Google Scholar 

  80. 80.

    Taravati, S. & Caloz, C. Mixer-duplexer-antenna leaky-wave system based on periodic space-time modulation. IEEE Trans. Ant. Prop 65, 442–452 (2017).

    Article  Google Scholar 

  81. 81.

    Tymchenko, M., Sounas, D. L., Nagulu, A., Krishnaswamy, H. & Alù, A. Quasielectrostatic wave propagation beyond the delay-bandwidth limit in switched networks. Phys. Rev. X 9, 031015 (2019).

    Google Scholar 

  82. 82.

    Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B 91, 174306 (2015).

    Article  Google Scholar 

  83. 83.

    Estep, N. A., Sounas, D. L. & Alù, A. Magnetless microwave circulators based on spatiotemporally modulated rings of coupled resonators. IEEE Trans. Microw. Theory Tech 64, 502–518 (2016).

    Google Scholar 

  84. 84.

    Soer, M. C. M., Klumperink, E. A. M., Boer, P. T. D., Vliet, F. E. V. & Nauta, B. Unified frequency-domain analysis of switched-series-RC passive mixers and samplers. IEEE Trans. Circuits Syst. I 57, 2618–2631 (2010).

    MathSciNet  Article  Google Scholar 

  85. 85.

    Reiskarimian, N., Zhou, J., Chuang, T. H. & Krishnaswamy, H. Analysis and design of two-port N-path bandpass filters with embedded phase shifting. IEEE Trans. Circuits Syst. II 63, 728–732 (2016).

    Article  Google Scholar 

  86. 86.

    Hameed, S., Rachid, M., Daneshrad, B. & Pamarti, S. Frequency-domain analysis of N-path filters using conversion matrices. IEEE Trans. Circuits Syst. II Express Briefs 63, 74–78 (2016).

    Article  Google Scholar 

  87. 87.

    Pavan, S. & Klumperink, E. A. M. Generalized analysis of high-order switch-RC N-path mixers/filters using the adjoint network. IEEE Trans. Circuits Syst. I 65, 3267–3278 (2018).

    Article  Google Scholar 

  88. 88.

    Xu, C. & Piazza, G. A generalized model for linear periodically-time-variant circulators. Sci. Rep 9, 8718 (2019).

    Article  Google Scholar 

  89. 89.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  Google Scholar 

  90. 90.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  Google Scholar 

  91. 91.

    Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    Article  Google Scholar 

  92. 92.

    Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  Google Scholar 

  93. 93.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  Google Scholar 

  94. 94.

    Yu, Z., Veronis, G., Wang, Z. & Fan, S. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100, 023902 (2008).

    Article  Google Scholar 

  95. 95.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljaćić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

Download references


This work was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Defense Advanced Research Projects Agency. We wish to thank T. Olsson and T. Hancock for useful feedback and comments.

Author information




A.N., N.R. and H.K. performed literature review and wrote the manuscript. H.K. directed and supervised the project.

Corresponding author

Correspondence to Harish Krishnaswamy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagulu, A., Reiskarimian, N. & Krishnaswamy, H. Non-reciprocal electronics based on temporal modulation. Nat Electron 3, 241–250 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing