Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures

Abstract

The efficient detection of a magnetic state at nanoscale dimensions is important for the development of spin-logic devices. Magnetoresistance effects can be used to detect magnetic states, but they do not generate an electromotive force (that is, a voltage) or a current that can be used to drive a circuit element for logic device applications. Here we report a favourable scaling law for the detection of an in-plane magnetic state of a magnet by using the inverse spin Hall effect in cobalt–iron/platinum (CoFe/Pt) nanostructured devices. By reducing the dimensions of the device, we obtain a large spin Hall signal of 0.3 Ω at room temperature and quantify an effective spin-to-charge conversion rate for the ferromagnetic/heavy metal system. We predict that this spin–orbit detection of magnetic states could be used to drive spin-logic circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sketch, images and measurements of the spin-to-charge conversion device used for in-plane magnetic state detection.
Fig. 2: Temperature dependence of the spin Hall signals.
Fig. 3: Favourable scaling law for the spin-to-charge conversion rates.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. 1.

    Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Article  Google Scholar 

  2. 2.

    Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects. In 2017 IEEE International Electron Devices Meeting 29.1.1–29.1.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268472

  3. 3.

    Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    Article  Google Scholar 

  4. 4.

    Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  Google Scholar 

  5. 5.

    Dery, H., Dalal, P. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  Google Scholar 

  6. 6.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    Article  Google Scholar 

  7. 7.

    Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  Google Scholar 

  8. 8.

    Thomson, W. XIX. On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857).

    Article  Google Scholar 

  9. 9.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  Google Scholar 

  10. 10.

    Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  11. 11.

    Jin, S., McCormack, M., Tiefel, T. H. & Ramesh., R. Colossal magnetoresistance in La–Ca–Mn–O ferromagnetic thin films. J. Appl. Phys. 76, 6929–6933 (1994).

    Article  Google Scholar 

  12. 12.

    Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  13. 13.

    Wang, W. & Victora, R. H. Enhancement of giant magnetoresistance and oscillation by wave-vector filtering in Fe/Ag/Fe/InAs/Ag. Phys. Rev. B 94, 245415 (2016).

    Article  Google Scholar 

  14. 14.

    Takemura, R. et al. Highly-scalable disruptive reading scheme for Gb-scale SPRAM and beyond. In 2010 IEEE International Memory Workshop 1–2 (IEEE, 2010); https://doi.org/10.1109/IMW.2010.5488324

  15. 15.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article  Google Scholar 

  16. 16.

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  Google Scholar 

  17. 17.

    Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  18. 18.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  19. 19.

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  Google Scholar 

  20. 20.

    Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Let. 116, 096602 (2016).

    Article  Google Scholar 

  21. 21.

    Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  Google Scholar 

  22. 22.

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  23. 23.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  24. 24.

    Laczkowski, P. et al. Large enhancement of the spin Hall effect in Au by side-jump scattering on Ta impurities. Phys. Rev. B 96, 140405(R) (2017).

    Article  Google Scholar 

  25. 25.

    Pham, V. T. et al. Ferromagnetic/nonmagnetic nanostructures for the electrical measurement of the spin Hall effect. Nano Lett. 16, 6755–6760 (2016).

    Article  Google Scholar 

  26. 26.

    Sagasta, E. et al. Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime. Phys. Rev. B 94, 060412(R) (2016).

    Article  Google Scholar 

  27. 27.

    Liu, L., Chen, C.-T. & Sun, J. Z. Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10, 561–566 (2014).

    Article  Google Scholar 

  28. 28.

    Yan, W. et al. Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure. Nat. Commun. 8, 661 (2017).

    Article  Google Scholar 

  29. 29.

    Nguyen, M.-H., Ralph, D. C. & Buhrman, R. A. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev. Lett. 116, 126601 (2015).

    Article  Google Scholar 

  30. 30.

    Zahnd, G. et al. Spin diffusion length and polarization of ferromagnetic metals measured by the spin-absorption technique in lateral spin valves. Phys. Rev. B 98, 174414 (2018).

    Article  Google Scholar 

  31. 31.

    Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).

    Article  Google Scholar 

  32. 32.

    Li, S., Shen, K. & Xia, K. Interfacial spin Hall effect and spin swapping in Fe|Au bilayer from first principles. Phys. Rev. B 99, 134427 (2019).

    Article  Google Scholar 

  33. 33.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  34. 34.

    Bauer, G. E. W., Saitoh, E. & Van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  Google Scholar 

  35. 35.

    Sagasta, E. et al. Unveiling the mechanisms of the spin Hall effect in Ta. Phys. Rev. B 98, 060410(R) (2018).

    Article  Google Scholar 

  36. 36.

    Sayed, S., Hong, S. & Datta, S. Transmission-line model for materials with spin-momentum locking. Phys. Rev. Appl. 10, 054044 (2018).

    Article  Google Scholar 

  37. 37.

    Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    Article  Google Scholar 

  38. 38.

    Safeer, C. K. et al. Room temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    Article  Google Scholar 

  39. 39.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Llopis and R. Gay for technical assistance with the sample fabrication and thank S. Sayed and S. Datta for fruitful discussions on the transmission line model and the equivalent circuit. V.T.P. thanks L. Vila for fruitful discussions on the local spin detection/injection technique. This work is supported by Intel Corporation through the Semiconductor Research Corporation under MSR-INTEL TASK 2017-IN-2744 and the ‘FEINMAN’ Intel Science Technology Center, and by the Spanish MINECO under the Maria de Maeztu Units of Excellence Programme (MDM-2016-0618) and under project numbers MAT2015-65159-R and RTI2018-094861-B-100. V.T.P. and W.Y.C. acknowledge postdoctoral fellowship support from ‘Juan de la Cierva—Formación’ programme by the Spanish MINECO (grant numbers FJCI-2017-34494 and FJC2018-038580-I, respectively). E.S. thanks the Spanish MECD for a PhD fellowship (grant number FPU14/03102).

Author information

Affiliations

Authors

Contributions

V.T.P. and F.C. conceived the study. V.T.P. and I.G. performed the experiments, with the help of W.Y.C. V.T.P., I.G., S.M., W.Y.C., D.E.N., E.S., C.-C.L., T.G., I.Y., S.M., L.E.H. and F.C. analysed the data and discussed the experiments. V.T.P. derived the equations from the 1D spin diffusion model. V.T.P. and A.M. performed the 3D FEM simulation based on the spin diffusion model. V.T.P., S.M. and F.C. wrote the manuscript. All the authors contributed to the scientific discussion and manuscript revision. F.C. supervised the work.

Corresponding authors

Correspondence to Van Tuong Pham or Fèlix Casanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–9 and Table 1.

Source data

Source Data Fig. 1

Excel file contains the source data of Fig. 1.

Source Data Fig. 2

Excel file contains the source data of Fig. 2.

Source Data Fig. 3

Excel file contains the source data of Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, V.T., Groen, I., Manipatruni, S. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat Electron 3, 309–315 (2020). https://doi.org/10.1038/s41928-020-0395-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing