An optically driven digital metasurface for programming electromagnetic functions

Abstract

Metasurfaces are engineered surfaces that consist of subwavelength periodic elements and can be used to manipulate electromagnetic waves. Multifunctional or reconfigurable electromagnetic meta-devices based on a direct-current biasing system can be built using lumped electronic components. However, such meta-devices require bulky power supplies, field-programmable gate arrays, electrical wires and complex control circuits. Here, we report a digital metasurface platform that can be programmed optically to implement electromagnetic functions. Our digital platform has 6 × 6 subarrays, each of which contains 4 × 4 metasurface elements based on electronic varactors integrated with an optical interrogation network based on photodiodes. The interrogation network can convert visible light illumination patterns to voltages and applies bias to the metasurface elements, generating specific microwave reflection phase distributions. To illustrate the capabilities of our approach, we use the optically driven digital metasurface for external cloaking, illusion and dynamic vortex beam generation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: OIDP architecture and its programmable EM functions.
Fig. 2: Realization of the subarray and the simulated performance of the ME.
Fig. 3: Proposed OIDP and its performance.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  Google Scholar 

  2. 2.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  Google Scholar 

  3. 3.

    Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

    Article  Google Scholar 

  4. 4.

    Diaz-Rubio, A., Asadchy, V. S., Elsakka, A. & Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017).

    Article  Google Scholar 

  5. 5.

    Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 3, e218 (2014).

    Article  Google Scholar 

  6. 6.

    Chen, S., Li, Z., Zhang, Y., Cheng, H. & Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 8, 1800104 (2018).

    Article  Google Scholar 

  7. 7.

    Cui, T. J. Microwave metamaterials. Natl Sci. Rev. 5, 134–136 (2018).

    Article  Google Scholar 

  8. 8.

    Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015).

    Article  Google Scholar 

  9. 9.

    Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Article  Google Scholar 

  10. 10.

    Zhang, X. G., Jiang, W. X., Tian, H. W. & Cui, T. J. Controlling radiation beams by low-profile planar antenna arrays with coding elements. ACS Omega 3, 10601–10611 (2018).

    Article  Google Scholar 

  11. 11.

    Luo, X. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015).

    Article  Google Scholar 

  12. 12.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    Article  Google Scholar 

  13. 13.

    Yan, L. et al. 0.2λ 0 thick adaptive retroreflector made of spin-locked metasurface. Adv. Mater. 30, 1802721 (2018).

    Article  Google Scholar 

  14. 14.

    Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Article  Google Scholar 

  15. 15.

    Yang, H. et al. A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization and experiment. IEEE Trans. Antennas Propag. 64, 2246–2254 (2016).

    MathSciNet  Article  Google Scholar 

  16. 16.

    Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1028 (2019).

    Article  Google Scholar 

  17. 17.

    Chen, K. et al. A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017).

    Article  Google Scholar 

  18. 18.

    Cui, T. J., Liu, S., Bai, G. D. & Ma, Q. Direct transmission of digital message via programmable coding metasurface. Research 2019, 2584509 (2019).

    Article  Google Scholar 

  19. 19.

    Huang, C. et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater. 5, 1700485 (2017).

    Article  Google Scholar 

  20. 20.

    Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    Article  Google Scholar 

  21. 21.

    Oliveri, G., Werner, D. H. & Massa, A. Reconfigurable electromagnetics through metamaterials—a review. Proc. IEEE 103, 1034–1056 (2015).

    Article  Google Scholar 

  22. 22.

    Zhang, M. et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018).

    Article  Google Scholar 

  23. 23.

    Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv 1, 18000901 (2018).

    Article  Google Scholar 

  24. 24.

    Shadrivov, I. V., Kapitanova, P. V., Maslovski, S. I. & Kivshar, Y. S. Metamaterials controlled with light. Phys. Rev. Lett. 109, 083902 (2012).

    Article  Google Scholar 

  25. 25.

    Zhang, X. G., Jiang, W. X. & Cui, T. J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Appl. Phys. Lett. 113, 091601 (2018).

    Article  Google Scholar 

  26. 26.

    Zhang, X. G. et al. Light-controllable digital coding metasurfaces. Adv. Sci. 5, 1801028 (2018).

    Article  Google Scholar 

  27. 27.

    Gorlach, M. A., Dobrykh, D. A., Slobozhanyuk, A. P., Belov, P. A. & Lapine, M. Nonlinear symmetry breaking in photometamaterials. Phys. Rev. B 97, 115119 (2018).

    Article  Google Scholar 

  28. 28.

    Vaccaro, S., Mosig, J. R. & Maagt, P. D. Two advanced solar antenna ‘SOLANT’ designs for satellite and terrestrial communications. IEEE Trans. Antennas Propag. 51, 2028–2034 (2003).

    Article  Google Scholar 

  29. 29.

    Tanaka, M., Suzuki, Y., Araki, K. & Suzuki, R. Microstrip antenna with solar cells for microsatellites. Electron. Lett. 31, 263–366 (1996).

    Google Scholar 

  30. 30.

    Hashemi, M. R. M. et al. A flexible phased array system with low areal mass density. Nat. Electron. 2, 195–205 (2019).

    Article  Google Scholar 

  31. 31.

    An, W., Xu, S., Yang, F. & Gao, J. A Ka-band reflectarray antenna integrated with solar cells. IEEE Trans. Antennas Propag. 62, 5539–5546 (2014).

    MathSciNet  Article  Google Scholar 

  32. 32.

    Salamin, Y. et al. Microwave plasmonic mixer in a transparent fibre-wireless link. Nat. Photon. 12, 749–753 (2018).

    Article  Google Scholar 

  33. 33.

    Piccardo, M. et al. Radio frequency transmitter based on a laser frequency comb. Proc. Natl Acad. Sci. USA 116, 9181–9185 (2019).

    Article  Google Scholar 

  34. 34.

    Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article  Google Scholar 

  35. 35.

    MA46H120 Series Datasheet (MACOM, 2018); https://cdn.macom.com/datasheets/MA46H120%20Series.pdf

  36. 36.

    BPW 34S Datasheet (OSRAM, 2020); https://www.osram.com/os/ecat/DIL%20SMT%20BPW%2034%20S/com/en/class_pim_web_catalog_103489/global/prd_pim_device_2219543/

  37. 37.

    Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018).

    Article  Google Scholar 

  38. 38.

    Hougne, P. D., Fink, M. & Lerosey, G. Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron. 1, 36–41 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202 and 2017YFA0700203), the National Natural Science Foundation of China (61631007, 61571117, 61731010, 61735010, 61722106, 61701107 and 61701108), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0081), the Scientific Research Foundation of Graduate School of Southeast University (YBPY1938), the Foundation of National Excellent Doctoral Dissertation of China (201444) and the 111 Project (111-2-05).

Author information

Affiliations

Authors

Contributions

X.G.Z., W.X.J., C.-W.Q. and T.J.C. conceived the idea of the optically interrogated digital platform. X.G.Z., H.L.J., Q.W., L.B. and Y.L. conducted the theoretical analysis. X.G.Z., H.W.T., L.B. and Z.J.L. conducted the simulations and performed the fabrication and measurements. X.G.Z., W.X.J., S.S., C.-W.Q. and T.J.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wei Xiang Jiang or Cheng-Wei Qiu or Tie Jun Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Table 1, and Notes 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.G., Jiang, W.X., Jiang, H.L. et al. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron 3, 165–171 (2020). https://doi.org/10.1038/s41928-020-0380-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing