Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars


Antiferromagnets are magnetically ordered materials without a macroscopic magnetization. As a result, they could be of use in the development of memory devices because data cannot be erased by external magnetic fields. However, this also makes it difficult to electrically control their magnetic order (Néel vector). Here, we show that pillars of antiferromagnetic PtMn, which are grown on a heavy-metal layer and have diameters down to 800 nm, can be reversibly switched between different magnetic states by electric currents. The devices are based on materials that are typically used in the magnetic memory industry, and we observe switching down to a current density of ~2 MA cm−2. Furthermore, by varying the amplitude of the writing current, multilevel memory characteristics can be achieved. Micromagnetic simulations suggest that the different magnetic states may consist of domains separated by domain walls with vortex and anti-vortex textures that move in response to current, modifying the average Néel vector.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure.
Fig. 2: Current-controlled switching measurements.
Fig. 3: Micromagnetic simulations.
Fig. 4: Switching experiment with an asymmetric number of write pulses.
Fig. 5: Switching results for different AFM film thickness and heavy-metal materials.
Fig. 6: Current-controlled switching measurements on nanometre-scale devices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Google Scholar 

  2. 2.

    Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Google Scholar 

  3. 3.

    Jungfleisch, M. B., Zhang, W. & Hoffmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018).

    Google Scholar 

  4. 4.

    Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Status Solidi Rapid Res. Lett. 11, 1700022 (2017).

    Google Scholar 

  5. 5.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  Google Scholar 

  6. 6.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Google Scholar 

  7. 7.

    Olejnik, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Google Scholar 

  8. 8.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Google Scholar 

  9. 9.

    Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Google Scholar 

  10. 10.

    Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 40, 17–35 (2014).

    Google Scholar 

  11. 11.

    Khymyn, R. et al. Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Sci. Rep. 8, 15727 (2018).

    Google Scholar 

  12. 12.

    Sapozhnik, A. A. et al. Manipulation of antiferromagnetic domain distribution in Mn2Au by ultrahigh magnetic fields and by strain. Phys. Status Solidi Rapid Res. Lett. 11, 1600438 (2017).

    Google Scholar 

  13. 13.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    Google Scholar 

  14. 14.

    Ohldag, H. et al. Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet. Phys. Rev. Lett. 86, 2878–2881 (2001).

    Google Scholar 

  15. 15.

    Wang, Y. Y., Song, C., Zhang, J. Y. & Pan, F. Role of an ultrathin platinum seed layer in antiferromagnet-based perpendicular exchange coupling and its electrical manipulation. J. Magn. Magn. Mater. 428, 431–436 (2017).

    Google Scholar 

  16. 16.

    Wang, Y. et al. Electrical control of the exchange spring in antiferromagnetic metals. Adv. Mater. 27, 3196–3201 (2015).

    Google Scholar 

  17. 17.

    Zheng, G. et al. Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition. Sci. Rep. 7, 5366 (2017).

    Google Scholar 

  18. 18.

    Barra, A., Domann, J., Kim, K. W. & Carman, G. Voltage control of antiferromagnetic phases at near-terahertz frequencies. Phys. Rev. Appl. 9, 034017 (2018).

    Google Scholar 

  19. 19.

    Lopez-Dominguez, V., Almasi, H. & Amiri, P. K. Picosecond electric field induced switching of antiferromagnets. Phys. Rev. Appl. 11, 024019 (2019).

    Google Scholar 

  20. 20.

    Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photon. 10, 653–656 (2016).

    Google Scholar 

  21. 21.

    Fiebig, M. et al. Ultrafast magnetization dynamics of antiferromagnetic compounds. J. Phys. D 41, 164005 (2008).

    Google Scholar 

  22. 22.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2010).

    Google Scholar 

  23. 23.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Google Scholar 

  24. 24.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    Google Scholar 

  25. 25.

    Godinho, J. et al. Electrically induced and detected Neel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).

    Google Scholar 

  26. 26.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Neel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Google Scholar 

  27. 27.

    Zhou, X. F. et al. From fieldlike torque to antidamping torque in antiferromagnetic Mn2Au. Phys. Rev. Appl. 11, 054030 (2019).

    Google Scholar 

  28. 28.

    Sapozhnik, A. A. et al. Direct imaging of antiferromagnetic domains in Mn2Au manipulated by high magnetic fields. Phys. Rev. B 97, 134429 (2018).

    Google Scholar 

  29. 29.

    Barthem, V. M. T. S., Colin, C. V., Haettel, R., Dufeu, D. & Givord, D. Easy moment direction and antiferromagnetic domain wall motion in Mn2Au. J. Magn. Magn. Mater. 406, 289–292 (2016).

    Google Scholar 

  30. 30.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation. Phys. Rev. Appl. 9, 064040 (2018).

    Google Scholar 

  31. 31.

    Dunz, M., Matalla-Wagner, T. & Meinert, M. Spin–orbit torque induced electrical switching of antiferromagnetic MnN. Preprint at (2019).

  32. 32.

    Baldrati, L. et al. Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films. Phys. Rev. B 98, 024422 (2018).

    Google Scholar 

  33. 33.

    Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Google Scholar 

  34. 34.

    Fischer, J. et al. Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures. Phys. Rev. B 97, 014417 (2018).

    Google Scholar 

  35. 35.

    Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017).

    Google Scholar 

  36. 36.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Google Scholar 

  37. 37.

    Tehrani, S. et al. Recent developments in magnetic tunnel junction MRAM. IEEE Trans. Magn. 36, 2752–2757 (2000).

    Google Scholar 

  38. 38.

    Hals, K. M., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Google Scholar 

  39. 39.

    Liu, Z. et al. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv. Mater. 28, 118–123 (2016).

    Google Scholar 

  40. 40.

    Gouva, M. E., Wysin, G. M., Bishop, A. R. & Mertens, F. G. Vortices in the classical two-dimensional anisotropic Heisenberg model. Phys. Rev. B 39, 11840–11849 (1989).

    Google Scholar 

  41. 41.

    Chmiel, F. P. et al. Observation of magnetic vortex pairs at room temperature in a planar ɑ-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).

    Google Scholar 

  42. 42.

    Wu, J. et al. Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 7, 303–306 (2011).

    Google Scholar 

  43. 43.

    Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Google Scholar 

  44. 44.

    Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Google Scholar 

  45. 45.

    Yamane, Y., Ieda, J.i. & Sinova, J. Spin–transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).

    Google Scholar 

  46. 46.

    Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    Google Scholar 

  47. 47.

    Di Ventra, M., Pershin, Y. V. & Chua, L. O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009).

    Google Scholar 

  48. 48.

    Mayergoyz, I. D. Mathematical models of hysteresis. Phys. Rev. Lett. 56, 1518–1521 (1986).

    Google Scholar 

  49. 49.

    Zhang, S. et al. Spin–orbit-torque-driven multilevel switching in Ta/CoFeB/MgO structures without initialization. Appl. Phys. Lett. 114, 042401 (2019).

    Google Scholar 

  50. 50.

    Zhang, S. et al. A spin–orbit-torque memristive device. Adv. Electron. Mater. 5, 1800782 (2019).

    Google Scholar 

  51. 51.

    Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    Google Scholar 

  52. 52.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Google Scholar 

  53. 53.

    Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    MathSciNet  Google Scholar 

  54. 54.

    Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    Google Scholar 

  55. 55.

    Puliafito, V. et al. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Phys. Rev. B 99, 024405 (2019).

    Google Scholar 

Download references


This work was supported by a grant from the National Science Foundation, Division of Electrical, Communications and Cyber Systems (NSF ECCS-1853879), and in part by the Air Force Office of Scientific Research (AFOSR FA9550-15-1-0377). This work also utilized the Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Center (DMR-1720139), the State of Illinois and Northwestern University. For part of the sample fabrication, use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. G.F. and F.G. also acknowledge support from PETASPIN.

Author information




J.S., V.L.-D., H.A., G.F. and P.K.A. designed the devices. V.L.-D., J.S. and H.A. deposited the materials. J.S. fabricated the devices. V.L.-D., J.S. and C.W. performed the measurements. F.G. and G.F. performed the micromagnetic simulations. P.K.A., G.F., V.L.-D. and J.S. wrote the manuscript with contributions from the other authors. All authors discussed the results, contributed to the data analysis and commented on the manuscript. J.S. and V.L.-D. contributed equally to this research. The study was performed under the supervision of P.K.A.

Corresponding authors

Correspondence to Giovanni Finocchio or Pedram Khalili Amiri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–9.

Supplementary Video 1

The time-domain evolution of the spatial distribution of the Néel vector for the simulation described in Fig. 3b.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Lopez-Dominguez, V., Garesci, F. et al. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat Electron 3, 92–98 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing