Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes

Abstract

Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With this approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5 × 108 A cm−2 that exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors with a diameter of only 2 nm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterization of Te NWs isolated down to the few-chain limit by CNT encapsulation.
Fig. 2: Characterization of few-chain Te NWs shielded by BNNTs.
Fig. 3: Current-carrying capability of Te NWs encapsulated in BNNTs.
Fig. 4: Electrical measurements of transistors based on few-chain Te NWs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Article  Google Scholar 

  2. 2.

    Qiu, G. et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett. 18, 5760–5767 (2018).

    Article  Google Scholar 

  3. 3.

    Zhu, Z. et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys. Rev. Lett. 119, 106101 (2017).

    Article  Google Scholar 

  4. 4.

    Peng, H., Kioussis, N. & Snyder, G. J. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89, 195206 (2016).

    Article  Google Scholar 

  5. 5.

    Qiu, G. et al. High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In Proceedings of the 76th Device Research Conference (IEEE, 2018).

  6. 6.

    Agapito, L., Kioussis, N., Goddard, W. A. III & Ong, N. P. Novel family of chiral-based topological insulators: elemental tellurium under strain. Phys. Rev. Lett. 110, 176401 (2013).

    Article  Google Scholar 

  7. 7.

    Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

    Article  Google Scholar 

  8. 8.

    Nakayama, K. et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Phys. Rev. B 95, 125204 (2017).

    Article  Google Scholar 

  9. 9.

    Wang, Q. S. et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497–7505 (2014).

    Article  Google Scholar 

  10. 10.

    Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018).

    Article  Google Scholar 

  11. 11.

    Lee, T. et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25, 2920–2925 (2013).

    Article  Google Scholar 

  12. 12.

    Lin, S. Q. et al. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016).

    Article  Google Scholar 

  13. 13.

    Qiu, G. et al. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 19, 1955–1962 (2019).

    Article  Google Scholar 

  14. 14.

    Doi, T., Nakao, K. & Kamimura, H. The valence band structure of tellurium. I. The k·p perturbation method. J. Phys. Soc. Jpn 28, 36–43 (1970).

    Article  Google Scholar 

  15. 15.

    Martin, R. M., Lucovsky, G. & Helliwell, K. Intermolecular bonding and lattice dynamics of Se and Te. Phys. Rev. B 13, 1383–1395 (1976).

    Article  Google Scholar 

  16. 16.

    Du, Y. C. et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017).

    Article  Google Scholar 

  17. 17.

    Medeiros, P. V. C., Marks, S., Wynn, J. M. & Vasylenko, A. Single-atom scale structural selectivity in Te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes. ACS Nano 11, 6178–6185 (2017).

    Article  Google Scholar 

  18. 18.

    Pham, T. et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 361, 263–266 (2018).

    Article  Google Scholar 

  19. 19.

    Kobayashi, K. & Yasuda, H. Structural transition of tellurium encapsulated in confined one-dimensional nanospaces depending on the diameter. Chem. Phys. Lett. 634, 60–65 (2015).

    Article  Google Scholar 

  20. 20.

    Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article  Google Scholar 

  21. 21.

    Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  Google Scholar 

  22. 22.

    Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  Google Scholar 

  23. 23.

    Komsa, H.-P., Senga, R., Suenaga, K. & Krasheninnikov, A. V. Structural distortions and charge density waves in iodine chains encapsulated inside carbon nanotubes. Nano Lett. 17, 3694–3700 (2017).

    Article  Google Scholar 

  24. 24.

    Walker, K. E. et al. Growth of carbon nanotubes inside boron nitride nanotubes by coalescence of fullerenes: toward the world’s smallest coaxial cable. Small Methods 1, 1700184 (2017).

    Article  Google Scholar 

  25. 25.

    Nieto-Ortega, B. et al. Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt. Angew. Chem. Int. Ed. 56, 12240–12244 (2017).

    Article  Google Scholar 

  26. 26.

    Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010).

    Article  Google Scholar 

  27. 27.

    Seidel, R. V. et al. Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 96, 6694–6699 (2004).

    Article  Google Scholar 

  28. 28.

    Plechinger, G. et al. Scanning Raman spectroscopy of few- and single-layer MoS2 flakes. Proc. SPIE 8463, 84630N (2012).

    Article  Google Scholar 

  29. 29.

    Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  Google Scholar 

  30. 30.

    Coker, A., Lee, T. & Das, T. P. Investigation of the electronic properties of tellurium-energy-band structure. Phys. Rev. B 22, 2968–2975 (1980).

    Article  Google Scholar 

  31. 31.

    Andharia, E. et al. Exfoliation energy, quasiparticle band structure, and excitonic properties of selenium and tellurium atomic chains. Phys. Rev. B 98, 035420 (2018).

    Article  Google Scholar 

  32. 32.

    Pham, T. et al. A universal wet-chemistry route to metal filling of boron nitride nanotubes. Nano Lett. 16, 320–325 (2016).

    Article  Google Scholar 

  33. 33.

    Nautiyal, P., Gupta, A., Seal, S., Boesl, B. & Agarwal, A. Reactive wetting and filling of boron nitride nanotubes by molten aluminum during equilibrium solidification. Acta Mater. 126, 124–131 (2017).

    Article  Google Scholar 

  34. 34.

    Lee, C. H., Xie, M., Kayastha, V., Wang, J. & Yap, Y. K. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22, 1782–1787 (2010).

    Article  Google Scholar 

  35. 35.

    Lee., C. H. et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots. Adv. Mater. 25, 4544–4548 (2013).

    Article  Google Scholar 

  36. 36.

    Huang, J. W. et al. Superior current carrying capacity of boron nitride encapsulated carbon nanotubes with zero-dimensional contacts. Nano Lett. 15, 6836–6840 (2015).

    Article  Google Scholar 

  37. 37.

    Pine, A. S. & Dresselhaus, G. Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4, 356–371 (1971).

    Article  Google Scholar 

  38. 38.

    Wurz, J., Logeeswaran, V. J., Sarkar, A. & Saif Islam, M. High current density and failure mechanism in epitaxially bridged silicon nanowires. In Proceedings of 8th IEEE Conference on Nanotechnology (IEEE, 2008).

  39. 39.

    Liang, W. et al. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 9, 1689–1693 (2009).

    Article  Google Scholar 

  40. 40.

    Tang, J. et al. Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors. Nanotechnology 21, 505704 (2010).

    Article  Google Scholar 

  41. 41.

    Nie, A., Liu, J., Dong, C. & Wang, H. Electrical failure behaviors of semiconductor oxide nanowires. Nanotechnology 22, 405703 (2011).

    Article  Google Scholar 

  42. 42.

    Westover, T. et al. Photoluminescence, thermal transport, and breakdown in Joule-heated GaN nanowires. Nano Lett. 9, 257–263 (2008).

    Article  Google Scholar 

  43. 43.

    Wallentin, J. et al. Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires. Nano Lett. 11, 2286–2290 (2011).

    Article  Google Scholar 

  44. 44.

    Dayeh, S. A., Susac, D., Kavanagh, K. L., Yu, E. T. & Wang, D. Field dependent transport properties in InAs nanowire field effect transistors. Nano Lett. 8, 3114–3119 (2008).

    Article  Google Scholar 

  45. 45.

    Hu, Y. et al. Observation of a 2D electron gas and the tuning of the electrical conductance of ZnO nanowires by controllable surface band bending. Adv. Funct. Mater. 19, 2380–2387 (2009).

    Article  Google Scholar 

  46. 46.

    Stolyarov, M. A. et al. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: prospects of interconnect applications. Nanoscale 8, 15774–15782 (2016).

    Article  Google Scholar 

  47. 47.

    Geremew, A. et al. Current carrying capacity of quasi-1D ZrTe3 van der Waals nanoribbons. IEEE Electron Device Lett. 39, 735–738 (2018).

    Article  Google Scholar 

  48. 48.

    Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013).

    Article  Google Scholar 

  49. 49.

    Wang, J. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Article  Google Scholar 

  50. 50.

    Pan, Y., Gao, S., Yang, L. & Lu, J. Dependence of excited-state properties of tellurium on dimensionality: from bulk to two dimensions to one dimension. Phys. Rev. B 98, 085135 (2018).

    Article  Google Scholar 

  51. 51.

    Léonard, F. & Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693 (2000).

    Article  Google Scholar 

  52. 52.

    Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  Google Scholar 

  53. 53.

    Miao, J., Zhang, S., Cai, L., Scherr, M. & Wang, C. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano 9, 9236–9243 (2015).

    Article  Google Scholar 

  54. 54.

    Berweger, S. et al. Imaging carrier inhomogeneitties in ambipolar tellurene field effect transistors. Nano Lett. 19, 1289–1284 (2019).

    Article  Google Scholar 

  55. 55.

    Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

P.D.Y. was supported by NSF/AFOSR under EFRI 2DARE grant no. EFMA-1433459, ARO grant no. W911NF-15-1-0574 and ASCENT, one of six centres in JUMP, a Semiconductor Research Corporation (SRC) programme sponsored by DARPA. P.D.Y. and W.W. were also supported by ARO grant no. W911NF-17-1-0573 and NSF under grant no. CMMI-1762698. J.J. and H.W. acknowledge support from the US Office of Naval Research for the TEM effort. S.G. and L.Y. are supported by National Science Foundation (NSF) CAREER grant no. DMR-1455346 and Air Force Office of Scientific Research (AFOSR) grant no. FA9550-17-1-0304. M.J.K. was supported in part by the Global Research and Development Center Program (2018K1A4A3A01064272) and Brain Pool Program (2019H1D3A2A01061938) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. Computational resources were provided by the Stampede of Teragrid at the Texas Advanced Computing Center (TACC) through XSEDE.

Author information

Affiliations

Authors

Contributions

P.D.Y. and J.-K.Q. conceived the idea and proposed the Te-CNT and Te-BNNT research. J.-K.Q. and P.-Y.L. performed growth experiments and analysed experimental data. J.-K.Q., P.-Y.L., M.S., G.Q. and A.C. performed device fabrication and analysed the experimental data. S.-Q.Z. and Y.K.Y. prepared the BNNT samples. Y.W. and W.W. synthesized bare Te nanowires. S.H. and X.X. conducted and supervised the Raman measurements. J.J., Q.W., M.J.K. and H.-Y.W. performed and analysed the STEM measurements. S.G. and L.Y. performed and supervised the DFT calculations. J.-K.Q., P.-Y.L. and P.D.Y. co-wrote the manuscript.

Corresponding author

Correspondence to Peide D. Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–19 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, JK., Liao, PY., Si, M. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat Electron 3, 141–147 (2020). https://doi.org/10.1038/s41928-020-0365-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing