Strain-insensitive intrinsically stretchable transistors and circuits


Intrinsically stretchable electronics can form intimate interfaces with the human body, creating devices that could be used to monitor physiological signals without constraining movement. However, mechanical strain invariably leads to the degradation of the electronic properties of the devices. Here we show that strain-insensitive intrinsically stretchable transistor arrays can be created using an all-elastomer strain engineering approach, in which the patterned elastomer layers with tunable stiffnesses are incorporated into the transistor structure. By varying the cross-linking density of the elastomers, areas of increased local stiffness are introduced, reducing strain on the active regions of the devices. This approach can be readily incorporated into existing fabrication processes, and we use it to create arrays with a device density of 340 transistors cm–2 and a strain insensitivity of less than 5% performance variation when stretched to 100% strain. We also show that it can be used to fabricate strain-insensitive circuit elements, including NOR gates, ring oscillators and high-gain amplifiers for the stable monitoring of electrophysiological signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Strain-insensitive intrinsically stretchable transistor arrays with patterned strain distribution.
Fig. 2: Performance uniformity of intrinsically stretchable transistor arrays with patterned strain distribution.
Fig. 3: Electrical performance of the transistor array under global strain of up to 100%.
Fig. 4: Tunable mechanical stability and device density.
Fig. 5: Strain-insensitive digital and analogue circuits for human electrophysiological signal conditioning.

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the results within this paper and the other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Wang, S. H. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Google Scholar 

  2. 2.

    Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Google Scholar 

  3. 3.

    Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    Google Scholar 

  4. 4.

    Cai, L., Zhang, S. M., Miao, J. S., Yu, Z. B. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).

    Google Scholar 

  5. 5.

    Kim, H. J., Sim, K., Thukral, A. & Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, e1701114 (2017).

    Google Scholar 

  6. 6.

    Liang, J. J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Google Scholar 

  7. 7.

    Zhang, B. et al. Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv. Funct. Mater. 28, 1801683 (2018).

    Google Scholar 

  8. 8.

    Chen, G. et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 30, 1800129 (2018).

    Google Scholar 

  9. 9.

    Choong, C. L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451–3458 (2014).

    Google Scholar 

  10. 10.

    Qi, D. P. et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 29, 1702800 (2017).

    Google Scholar 

  11. 11.

    Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Google Scholar 

  12. 12.

    Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Google Scholar 

  13. 13.

    Wang, C. H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Google Scholar 

  14. 14.

    Huang, Z. L. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Google Scholar 

  15. 15.

    Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Google Scholar 

  16. 16.

    Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Google Scholar 

  17. 17.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Google Scholar 

  18. 18.

    Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

  19. 19.

    Sim, K. et al. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5, eaav9653 (2019).

    Google Scholar 

  20. 20.

    Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    Google Scholar 

  21. 21.

    Liang, J. J., Li, L., Niu, X. F., Yu, Z. B. & Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013).

    Google Scholar 

  22. 22.

    Trung, T. Q. & Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017).

    Google Scholar 

  23. 23.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Google Scholar 

  24. 24.

    Lacour, S. P., Wagner, S., Narayan, R. J., Li, T. & Suo, Z. G. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100, 014913 (2006).

    Google Scholar 

  25. 25.

    Graz, I. M., Cotton, D. P. J., Robinson, A. & Lacour, S. P. Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl. Phys. Lett. 98, 124101 (2011).

    Google Scholar 

  26. 26.

    Cotton, D. P. J., Popel, A., Graz, I. M. & Lacour, S. P. Photopatterning the mechanical properties of polydimethylsiloxane films. J. Appl. Phys. 109, 054905 (2011).

    Google Scholar 

  27. 27.

    Libanori, R. et al. Stretchable heterogeneous composites with extreme mechanical gradients. Nat. Commun. 3, 1265 (2012).

    Google Scholar 

  28. 28.

    Robinson, A., Aziz, A., Liu, Q., Suo, Z. & Lacour, S. P. Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014).

    Google Scholar 

  29. 29.

    Romeo, A., Liu, Q. H., Suo, Z. G. & Lacour, S. P. Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl. Phys. Lett. 102, 131904 (2013).

    Google Scholar 

  30. 30.

    Cai, M., Nie, S., Du, Y. P., Wang, C. J. & Song, J. Z. Soft elastomers with programmable stiffness as strain-isolating substrates for stretchable electronics. ACS Appl. Mater. Interfaces 11, 14340–14346 (2019).

    Google Scholar 

  31. 31.

    Wu, Z. G. et al. Seamless modulus gradient structures for highly resilient, stretchable system integration. Mater. Today Phys. 4, 28–35 (2018).

    Google Scholar 

  32. 32.

    Lee, J. et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23, 986–991 (2011).

    Google Scholar 

  33. 33.

    Cantarella, G. et al. Design of engineered elastomeric substrate for stretchable active devices and sensors. Adv. Funct. Mater. 28, 1705132 (2018).

    Google Scholar 

  34. 34.

    Cao, Y. et al. Direct fabrication of stretchable electronics on a polymer substrate with process-integrated programmable rigidity. Adv. Funct. Mater. 28, 1804604 (2018).

    Google Scholar 

  35. 35.

    Liu, Y. Q. et al. Stretchable motion memory devices based on mechanical hybrid materials. Adv. Mater. 29, 1701780 (2017).

    Google Scholar 

  36. 36.

    Bandodkar, A. J., Nunez-Flores, R., Jia, W. Z. & Wang, J. All-printed stretchable electrochemical devices. Adv. Mater. 27, 3060–3065 (2015).

    Google Scholar 

  37. 37.

    Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).

    Google Scholar 

  38. 38.

    Hyun, W. J. et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27, 7058-7064 (2015).

    Google Scholar 

  39. 39.

    Huang, T. C. et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans. Electron. Dev. 58, 141–150 (2011).

    Google Scholar 

  40. 40.

    Sekitani, T. et al. Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7, 11425 (2016).

    Google Scholar 

  41. 41.

    Lee, S. et al. Enhancement of closed-loop gain of organic amplifiers using double-gate structures. IEEE Electron Device Lett. 37, 770–773 (2016).

    Google Scholar 

  42. 42.

    Lu, G. H. et al. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013).

    Google Scholar 

  43. 43.

    Lussem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Google Scholar 

  44. 44.

    Lee, C. T. & Chen, H. C. Performance improvement mechanisms of organic thin-film transistors using MoOx-doped pentacene as channel layer. Org. Electron. 12, 1852–1857 (2011).

    Google Scholar 

  45. 45.

    Liu, Z. Y. et al. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 29, 1603382 (2017).

    Google Scholar 

  46. 46.

    Kang, I., Yun, H. J., Chung, D. S., Kwon, S. K. & Kim, Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896–14899 (2013).

    Google Scholar 

  47. 47.

    Alzetta, G. et al. The deal.II library, Version 9.0. J. Numer. Math. 26, 173–183 (2018).

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Yeoh, O. H. Some forms of the strain-energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993).

    Google Scholar 

  49. 49.

    Simo, J. C. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99, 61–112 (1992).

    MathSciNet  MATH  Google Scholar 

Download references


This work is supported by SAIT, Samsung Electronics. R.R., P.K.A. and C.L. acknowledge support from the National Science Foundation through CAREER Award CMMI-1553638. S.-K.K. thanks NRF 2018R1A2A1A05078734. N.M. is supported by the Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship.

Author information




S.W., W.W. and Z.B. designed the project and experiments. W.W. and S.W. fabricated the intrinsically stretchable transistor array and circuits and carried out the electrical characterizations. S.N. helped with the circuits design and measurements. R.R., P.K.A. and C.L. carried out the mechanical simulations. Y.O. and Y.Z. synthesized the azide compound. W.W. and X.Y carried out the materials characterizations. S.-K.K. provided the conjugated polymer. A.M.F. and R.N helped to take device photographs. N.M., J.X., Y.J. and Z.Z. helped with the experiments design and manuscript preparation. W.W., S.W., Z.B. and J.B.-H.T. wrote the manuscript. All the authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Sihong Wang or Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Kyung-In Jang, Rujun Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–23.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, S., Rastak, R. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron 4, 143–150 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing