Abstract
Electronics with skin- or tissue-like mechanical properties, including low stiffness and high stretchability, can be used to create intelligent technologies for application in areas such as health monitoring and human–machine interactions. Stretchable transistors that provide signal-processing and computational functions will be central to the development of this technology. Here, we review the development of stretchable transistors and functional circuits, examining progress in terms of materials and device engineering. We consider the three established approaches for creating stretchable transistors: buckling engineering, stiffness engineering and intrinsic-stretchability engineering. We also explore the current capabilities of stretchable transistors and circuits in human-integrated electronics and consider the challenges involved in delivering advanced applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).
Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human–machine interfaces. Sci. Adv. 2, e1601185 (2016).
Dagdeviren, C. et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech. Lett. 9, 269–281 (2016).
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).
Kim, D. H. & Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008).
Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures toward soft electronics. Adv. Mater. 30, e1801368 (2018).
Zolper, J. C. et al. Ion‐implanted GaN junction field effect transistor. Appl. Phys. Lett. 68, 2273–2275 (1996).
Natori, K. Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).
Yan, R., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992).
Wang, B. et al. High-κ gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).
Asif Khan, M., Kuznia, J. N., Bhattarai, A. R. & Olson, D. T. Metal semiconductor field effect transistor based on single crystal GaN. Appl. Phys. Lett. 62, 1786–1787 (1993).
Zan, H.-W., Yeh, C.-C., Meng, H.-F., Tsai, C.-C. & Chen, L.-H. Achieving high field-effect mobility in amorphous indium–gallium–zinc oxide by capping a strong reduction layer. Adv. Mater. 24, 3509–3514 (2012).
Sun, D. M., Liu, C., Ren, W. C. & Cheng, H. M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013).
Zhang, Y., Murtaza, I. & Meng, H. Development of fullerenes and their derivatives as semiconductors in field-effect transistors: exploring the molecular design. J. Mater. Chem. C 6, 3514–3537 (2018).
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).
Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).
Tran, H., Feig, V. R., Liu, K., Zheng, Y. & Bao, Z. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules 52, 3965–3974 (2019).
Wang, G.-J. N., Gasperini, A. & Bao, Z. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 4, 1700429 (2018).
Lamport, Z. A., Haneef, H. F., Anand, S., Waldrip, M. & Jurchescu, O. D. Tutorial: organic field-effect transistors: materials, structure and operation. J. Appl. Phys. 124, 071101 (2018).
Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).
Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
Kim, B. S. et al. Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression. ACS Appl. Mater. Interfaces 9, 10865–10873 (2017).
Chae, S. H. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013).
Choi, J. et al. Stretchable organic thin-film transistors fabricated on wavy-dimensional elastomer substrates using stiff-island structures. IEEE Electron Device Lett. 35, 762–764 (2014).
Gao, N., Zhang, X., Liao, S., Jia, H. & Wang, Y. Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 5, 823–827 (2016).
Park, S.-J., Kim, J., Chu, M. & Khine, M. Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals. Adv. Mater. Technol. 3, 1700158 (2018).
Kim, J. T. et al. Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett. 1, 375–379 (2012).
Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).
Xu, F. et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 14, 682–686 (2014).
Wang, S. et al. Experimental investigation on cumulative propagation of thin film buckling under cyclic load. Sci. China Technol. Sci. 54, 1371–1375 (2011).
Lacour, S. P., Wagner, S., Narayan, R. J., Li, T. & Suo, Z. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100, 014913 (2006).
Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).
Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).
Callens, S. J. P. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).
Lacour, S. P., Chan, D., Wagner, S., Li, T. & Suo, Z. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).
Lee, S. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25, 3114–3121 (2015).
Matsuhisa, N. et al. Printable elastic conductors by in-situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).
Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).
Wang, Y. et al. A highly stretchable, transparent and conductive polymer. Sci. Adv. 3, e1602076 (2017).
Oh, J. Y., Kim, S., Baik, H. K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455–4461 (2016).
Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).
Yao, S. & Zhu, Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 27, 1480–1511 (2015).
Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).
Lacour, S. P., Jones, J., Wagner, S., Teng, L. & Zhigang, S. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).
Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).
Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2005).
Xu, S. et al. Soft microfluidic assemblies of sensors, circuits and radios for the skin. Science 344, 70–74 (2014).
Jang, K. I. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).
Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).
Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).
Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).
Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).
Smith, Z. C. et al. Increased toughness and excellent electronic properties in regioregular random copolymers of 3-alkylthiophenes and thiophene. Adv. Electron. Mater. 3, 1600316 (2017).
Müller, C. et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv. Funct. Mater. 17, 2674–2679 (2007).
Mun, J. et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).
Lu, C. et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene-diketopyrrolopyrrole) polymers. Adv. Electron. Mater. 3, 1600311 (2017).
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).
Chiang, Y.-C. et al. Tailoring carbosilane side chains toward intrinsically stretchable semiconducting polymers. Macromolecules 52, 4396–4404 (2019).
Wang, G.-J. N. et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv. Funct. Mater. 26, 7254–7262 (2016).
Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).
Mun, J. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 31, e1903912 (2019).
Scott, J. I. et al. Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl. Mater. Interfaces 8, 14037–14045 (2016).
Shin, M. et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv. Mater. 27, 1255–1261 (2015).
Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).
Koo, J. H., Song, J. K. & Kim, D. H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019).
Helbling, T. et al. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications. Nanotechnology 20, 434010 (2009).
Kong, D. et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).
Bartlett, M. D. et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726–3731 (2016).
Wang, C. et al. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Sci. Rep. 5, 17849 (2015).
Wang, H. et al. Ionic gels and their applications in stretchable electronics. Macromol. Rapid Commun. 39, e1800246 (2018).
He, Y., Boswell, P. G., Buhlmann, P. & Lodge, T. P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B 111, 4645–4652 (2007).
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).
Waldrip, M., Jurchescu, O. D., Gundlach, D. J. & Bittle, E. G. Contact resistance in organic field-effect transistors: conquering the barrier. Adv. Funct. Mater. 30, 1904576 (2020).
Liu, C., Xu, Y. & Noh, Y.-Y. Contact engineering in organic field-effect transistors. Mater. Today 18, 79–96 (2015).
Liu, S. & Guo, X. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4, e23 (2012).
Elkington, D., Cooling, N., Belcher, W., Dastoor, P. & Zhou, X. Organic thin-film transistor (OTFT)-based sensors. Electronics 3, 234–254 (2014).
Trung, T. Q., Ramasundaram, S., Hwang, B. U. & Lee, N. E. An all-elastomeric transparent and sretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).
Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).
Biswas, S. et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix. Nat. Commun. 10, 4909 (2019).
Choi, M. et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 27, 1606005 (2017).
Chen, J., Cranton, W. & Fihn, M. (eds) Handbook of Visual Display Technology 1821–1841 (Springer, 2016).
Cai, L., Zhang, S., Miao, J., Yu, Z. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Zhu, S. et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013).
Acknowledgements
This work is supported by the start-up fund from the University of Chicago. J.X. acknowledges support from the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Contributions
Y.D., H.H. and S.W. researched the data and wrote the manuscript. M.W. and J.X. reviewed and edited the manuscript. All authors discussed the contents and provided important contributions to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Electronics thanks Tsuyoshi Sekitani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dai, Y., Hu, H., Wang, M. et al. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron 4, 17–29 (2021). https://doi.org/10.1038/s41928-020-00513-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-020-00513-5
This article is cited by
-
Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics
Nature Communications (2024)
-
Motion artefact management for soft bioelectronics
Nature Reviews Bioengineering (2024)
-
Skin-inspired soft bioelectronic materials, devices and systems
Nature Reviews Bioengineering (2024)
-
Self-locking Kirigami surfaces via controlled stretching
Communications Engineering (2024)
-
Organic electrochemical neurons for neuromorphic perception
Nature Electronics (2024)