Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stretchable transistors and functional circuits for human-integrated electronics

Abstract

Electronics with skin- or tissue-like mechanical properties, including low stiffness and high stretchability, can be used to create intelligent technologies for application in areas such as health monitoring and human–machine interactions. Stretchable transistors that provide signal-processing and computational functions will be central to the development of this technology. Here, we review the development of stretchable transistors and functional circuits, examining progress in terms of materials and device engineering. We consider the three established approaches for creating stretchable transistors: buckling engineering, stiffness engineering and intrinsic-stretchability engineering. We also explore the current capabilities of stretchable transistors and circuits in human-integrated electronics and consider the challenges involved in delivering advanced applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of stretchable transistors and functional circuits.
Fig. 2: Schematic representations of transistor structures and the transfer and output characteristic curves.
Fig. 3: Buckling-engineering-enabled stretchable transistors and circuits.
Fig. 4: Stiffness-engineering-enabled stretchable transistors and circuits.
Fig. 5: Intrinsically stretchable transistors and circuits.
Fig. 6: Applications for stretchable transistors and circuits.

Similar content being viewed by others

References

  1. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article  Google Scholar 

  2. Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human–machine interfaces. Sci. Adv. 2, e1601185 (2016).

    Article  Google Scholar 

  3. Dagdeviren, C. et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech. Lett. 9, 269–281 (2016).

    Article  Google Scholar 

  4. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  Google Scholar 

  5. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article  Google Scholar 

  6. Kim, D. H. & Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008).

    Article  Google Scholar 

  7. Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures toward soft electronics. Adv. Mater. 30, e1801368 (2018).

    Article  Google Scholar 

  8. Zolper, J. C. et al. Ion‐implanted GaN junction field effect transistor. Appl. Phys. Lett. 68, 2273–2275 (1996).

    Article  Google Scholar 

  9. Natori, K. Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).

    Article  Google Scholar 

  10. Yan, R., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992).

    Article  Google Scholar 

  11. Wang, B. et al. High-κ gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  Google Scholar 

  12. Asif Khan, M., Kuznia, J. N., Bhattarai, A. R. & Olson, D. T. Metal semiconductor field effect transistor based on single crystal GaN. Appl. Phys. Lett. 62, 1786–1787 (1993).

    Article  Google Scholar 

  13. Zan, H.-W., Yeh, C.-C., Meng, H.-F., Tsai, C.-C. & Chen, L.-H. Achieving high field-effect mobility in amorphous indium–gallium–zinc oxide by capping a strong reduction layer. Adv. Mater. 24, 3509–3514 (2012).

    Article  Google Scholar 

  14. Sun, D. M., Liu, C., Ren, W. C. & Cheng, H. M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013).

    Article  Google Scholar 

  15. Zhang, Y., Murtaza, I. & Meng, H. Development of fullerenes and their derivatives as semiconductors in field-effect transistors: exploring the molecular design. J. Mater. Chem. C 6, 3514–3537 (2018).

    Article  Google Scholar 

  16. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  Google Scholar 

  17. Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article  Google Scholar 

  18. Tran, H., Feig, V. R., Liu, K., Zheng, Y. & Bao, Z. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules 52, 3965–3974 (2019).

    Article  Google Scholar 

  19. Wang, G.-J. N., Gasperini, A. & Bao, Z. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 4, 1700429 (2018).

    Article  Google Scholar 

  20. Lamport, Z. A., Haneef, H. F., Anand, S., Waldrip, M. & Jurchescu, O. D. Tutorial: organic field-effect transistors: materials, structure and operation. J. Appl. Phys. 124, 071101 (2018).

    Article  Google Scholar 

  21. Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).

    Article  Google Scholar 

  22. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  Google Scholar 

  23. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  Google Scholar 

  24. Kim, B. S. et al. Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression. ACS Appl. Mater. Interfaces 9, 10865–10873 (2017).

    Article  Google Scholar 

  25. Chae, S. H. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013).

    Article  Google Scholar 

  26. Choi, J. et al. Stretchable organic thin-film transistors fabricated on wavy-dimensional elastomer substrates using stiff-island structures. IEEE Electron Device Lett. 35, 762–764 (2014).

    Article  Google Scholar 

  27. Gao, N., Zhang, X., Liao, S., Jia, H. & Wang, Y. Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 5, 823–827 (2016).

    Article  Google Scholar 

  28. Park, S.-J., Kim, J., Chu, M. & Khine, M. Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals. Adv. Mater. Technol. 3, 1700158 (2018).

    Article  Google Scholar 

  29. Kim, J. T. et al. Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett. 1, 375–379 (2012).

    Article  Google Scholar 

  30. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  Google Scholar 

  31. Xu, F. et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 14, 682–686 (2014).

    Article  Google Scholar 

  32. Wang, S. et al. Experimental investigation on cumulative propagation of thin film buckling under cyclic load. Sci. China Technol. Sci. 54, 1371–1375 (2011).

    Article  Google Scholar 

  33. Lacour, S. P., Wagner, S., Narayan, R. J., Li, T. & Suo, Z. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100, 014913 (2006).

    Article  Google Scholar 

  34. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  35. Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).

    Article  Google Scholar 

  36. Callens, S. J. P. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).

    Article  Google Scholar 

  37. Lacour, S. P., Chan, D., Wagner, S., Li, T. & Suo, Z. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).

    Article  Google Scholar 

  38. Lee, S. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25, 3114–3121 (2015).

    Article  Google Scholar 

  39. Matsuhisa, N. et al. Printable elastic conductors by in-situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  Google Scholar 

  40. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  Google Scholar 

  41. Wang, Y. et al. A highly stretchable, transparent and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  Google Scholar 

  42. Oh, J. Y., Kim, S., Baik, H. K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455–4461 (2016).

    Article  Google Scholar 

  43. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  Google Scholar 

  44. Yao, S. & Zhu, Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 27, 1480–1511 (2015).

    Article  Google Scholar 

  45. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article  Google Scholar 

  46. Lacour, S. P., Jones, J., Wagner, S., Teng, L. & Zhigang, S. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    Article  Google Scholar 

  47. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  Google Scholar 

  48. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2005).

    Article  Google Scholar 

  49. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits and radios for the skin. Science 344, 70–74 (2014).

    Article  Google Scholar 

  50. Jang, K. I. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).

    Article  Google Scholar 

  51. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  52. Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

    Article  Google Scholar 

  53. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    Article  Google Scholar 

  54. Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    Article  Google Scholar 

  55. Smith, Z. C. et al. Increased toughness and excellent electronic properties in regioregular random copolymers of 3-alkylthiophenes and thiophene. Adv. Electron. Mater. 3, 1600316 (2017).

    Article  Google Scholar 

  56. Müller, C. et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv. Funct. Mater. 17, 2674–2679 (2007).

    Article  Google Scholar 

  57. Mun, J. et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).

    Article  Google Scholar 

  58. Lu, C. et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene-diketopyrrolopyrrole) polymers. Adv. Electron. Mater. 3, 1600311 (2017).

    Article  Google Scholar 

  59. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  Google Scholar 

  60. Chiang, Y.-C. et al. Tailoring carbosilane side chains toward intrinsically stretchable semiconducting polymers. Macromolecules 52, 4396–4404 (2019).

    Article  Google Scholar 

  61. Wang, G.-J. N. et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv. Funct. Mater. 26, 7254–7262 (2016).

    Article  Google Scholar 

  62. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  Google Scholar 

  63. Mun, J. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 31, e1903912 (2019).

    Article  Google Scholar 

  64. Scott, J. I. et al. Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl. Mater. Interfaces 8, 14037–14045 (2016).

    Article  Google Scholar 

  65. Shin, M. et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv. Mater. 27, 1255–1261 (2015).

    Article  Google Scholar 

  66. Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article  Google Scholar 

  67. Koo, J. H., Song, J. K. & Kim, D. H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019).

    Article  Google Scholar 

  68. Helbling, T. et al. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications. Nanotechnology 20, 434010 (2009).

    Article  Google Scholar 

  69. Kong, D. et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).

    Article  Google Scholar 

  70. Bartlett, M. D. et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726–3731 (2016).

    Article  Google Scholar 

  71. Wang, C. et al. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Sci. Rep. 5, 17849 (2015).

    Article  Google Scholar 

  72. Wang, H. et al. Ionic gels and their applications in stretchable electronics. Macromol. Rapid Commun. 39, e1800246 (2018).

    Article  Google Scholar 

  73. He, Y., Boswell, P. G., Buhlmann, P. & Lodge, T. P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B 111, 4645–4652 (2007).

    Article  Google Scholar 

  74. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  Google Scholar 

  75. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article  Google Scholar 

  76. Waldrip, M., Jurchescu, O. D., Gundlach, D. J. & Bittle, E. G. Contact resistance in organic field-effect transistors: conquering the barrier. Adv. Funct. Mater. 30, 1904576 (2020).

    Article  Google Scholar 

  77. Liu, C., Xu, Y. & Noh, Y.-Y. Contact engineering in organic field-effect transistors. Mater. Today 18, 79–96 (2015).

    Article  Google Scholar 

  78. Liu, S. & Guo, X. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4, e23 (2012).

    Article  Google Scholar 

  79. Elkington, D., Cooling, N., Belcher, W., Dastoor, P. & Zhou, X. Organic thin-film transistor (OTFT)-based sensors. Electronics 3, 234–254 (2014).

    Article  Google Scholar 

  80. Trung, T. Q., Ramasundaram, S., Hwang, B. U. & Lee, N. E. An all-elastomeric transparent and sretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

    Article  Google Scholar 

  81. Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article  Google Scholar 

  82. Biswas, S. et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix. Nat. Commun. 10, 4909 (2019).

    Article  Google Scholar 

  83. Choi, M. et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 27, 1606005 (2017).

    Article  Google Scholar 

  84. Chen, J., Cranton, W. & Fihn, M. (eds) Handbook of Visual Display Technology 1821–1841 (Springer, 2016).

  85. Cai, L., Zhang, S., Miao, J., Yu, Z. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).

    Article  Google Scholar 

  86. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  87. Zhu, S. et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the start-up fund from the University of Chicago. J.X. acknowledges support from the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

Y.D., H.H. and S.W. researched the data and wrote the manuscript. M.W. and J.X. reviewed and edited the manuscript. All authors discussed the contents and provided important contributions to the manuscript.

Corresponding author

Correspondence to Sihong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Tsuyoshi Sekitani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Hu, H., Wang, M. et al. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron 4, 17–29 (2021). https://doi.org/10.1038/s41928-020-00513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-00513-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing