Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies

Abstract

Two-dimensional semiconductors have a range of electronic and optical properties that can be used in the development of advanced electronic devices. However, unlike conventional silicon semiconductors, simple doping methods to monolithically assemble n- and p-type channels on a single two-dimensional semiconductor are lacking, which makes the fabrication of integrated circuitry challenging. Here we report the reversible photo-induced doping of few-layer molybdenum ditelluride and tungsten diselenide, where the channel polarity can be reconfigured from n-type to p-type, and vice versa, with laser light at different frequencies. This reconfigurable doping is attributed to selective light–lattice interactions, such as the formation of tellurium self-interstitial defects under ultraviolet illumination and the incorporation of substitutional oxygen in tellurium and molybdenum vacancies under visible illumination. Using this approach, we create a complementary metal–oxide–semiconductor (CMOS) device on a single channel, where the circuit functions can be dynamically reset from a CMOS inverter to a CMOS switch using pulses of different light frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reconfigurable doping on few-layer 2H-MoTe2 channels using different photon energies.
Fig. 2: Time stability of reconfigurable doping on 2H-MoTe2 and reconfigurable doping on few-layer 2H-WSe2 channels.
Fig. 3: Doping polarity versus light frequency and intensity.
Fig. 4: Atomic-scale observations of individual dopants.
Fig. 5: Reconfigurable CMOS inverter–switch tuned at different light frequencies.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Queisser, H. J. & Haller, E. E. Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998).

    Article  Google Scholar 

  2. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  Google Scholar 

  3. Ohl, R. S. Properties of ionic bombarded silicon. Bell Syst. Tech. J. 31, 104–121 (1952).

    Article  Google Scholar 

  4. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  5. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  Google Scholar 

  6. Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    Article  Google Scholar 

  7. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  Google Scholar 

  8. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  9. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  Google Scholar 

  10. Cui, X. Multi-terminal transport measurements of MoS2 using a van der Waals heterostucture device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  Google Scholar 

  11. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  Google Scholar 

  12. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  Google Scholar 

  13. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  Google Scholar 

  14. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  Google Scholar 

  15. Liu, H., Han, N. & Zhao, J. Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Adv. 5, 17572–17581 (2015).

    Article  Google Scholar 

  16. Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  Google Scholar 

  17. Komsa, H.-P. & Krasheninnikov, A. V. Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 91, 125304 (2015).

    Article  Google Scholar 

  18. Zou, X. & Yakobson, B. I. An open canvas—2D materials with defects, disorder, and functionality. Acc. Chem. Res. 48, 73–80 (2015).

    Article  Google Scholar 

  19. Haldar, S., Vovusha, H., Yadav, M. K., Eriksson, O. & Sanyal, B. Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M = Mo, W; X = Se, Te). Phys. Rev. B 92, 235408 (2015).

    Article  Google Scholar 

  20. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  Google Scholar 

  21. Wu, E. et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 5, eaav3430 (2019).

    Article  Google Scholar 

  22. Liu, T. et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 30, 1804470 (2018).

    Article  Google Scholar 

  23. Wu, G. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020).

    Article  Google Scholar 

  24. Conan, A., Goureaux, G. & Zoaeter, M. Transport properties of MoTe2–x and MoSe2–x compounds between 130 and 300°K. J. Phys. Chem. Solids 36, 315–320 (1975).

    Article  Google Scholar 

  25. Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article  Google Scholar 

  26. Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  Google Scholar 

  27. Seo, S.-Y. et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1, 512–517 (2018).

    Article  Google Scholar 

  28. Chen, B. et al. Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction. ACS Nano 9, 5326–5332 (2015).

    Article  Google Scholar 

  29. Qu, D. et al. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 29, 1606433 (2017).

    Article  Google Scholar 

  30. Park, J. H. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017).

    Article  Google Scholar 

  31. Barja, S. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 10, 3382 (2019).

    Article  Google Scholar 

  32. Liu, Y., Stradins, P. & Wei, S.-H. Air passivation of chalcogen vacancies in two-dimensional semiconductors. Angew. Chem. Int. Ed. 55, 965–968 (2016).

    Article  Google Scholar 

  33. Lu, J. et al. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524–3532 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS), Korea, under project code IBS-R014-A1.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.S., G.M. and M.-H.J. conceived and designed the project. S.-Y.S., G.M., C.H., S.C. and H.C. conducted the device fabrication, photo-induced doping and electrical measurements. O.F.N.O. and S.-Y.C. performed the TEM measurements and analysed the data. J.P. and H.W.Y. performed the STM measurements and analysed the data. M.Y.P. performed the metal–organic chemical vapour deposition growth of the WSe2 channels. S.-Y.S., G.M. and M.-H.J. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Moon-Ho Jo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, SY., Moon, G., Okello, O.F.N. et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat Electron 4, 38–44 (2021). https://doi.org/10.1038/s41928-020-00512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-00512-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing