Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses

Abstract

Antiferromagnets are of potential use in the development of spintronic devices due to their ultrafast dynamics, insensitivity to external magnetic fields and absence of magnetic stray fields. Similar to their ferromagnetic counterparts, antiferromagnets can store information in the orientations of the collective magnetic order vector. However, the readout magnetoresistivity signals in simple antiferromagnetic films are weak, and reorientation of the magnetic order vector via optical excitation has not yet been achieved. Here we report the reversible and reproducible quenching of antiferromagnetic CuMnAs into nano-fragmented domain states using either electrical or ultrashort optical pulses. The changes in the resistivity of the system approach 20% at room temperature, which is comparable to the giant magnetoresistance ratios in ferromagnetic multilayers. We also obtain a signal readout by optical reflectivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Unipolar high-resistive switching in an elementary bar resistor microdevice.
Fig. 2: Resistivity switching ratios.
Fig. 3: Reproducible analogue switching characteristics.
Fig. 4: Relaxation of the switching signal, optical readout and switching by nanosecond pulses.
Fig. 5: Femtosecond-laser pulse switching.
Fig. 6: Optical switching characteristics.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).

    Article  Google Scholar 

  2. 2.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    Article  Google Scholar 

  3. 3.

    Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article  Google Scholar 

  4. 4.

    Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  Google Scholar 

  5. 5.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  Google Scholar 

  6. 6.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  Google Scholar 

  7. 7.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  Google Scholar 

  8. 8.

    Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Article  Google Scholar 

  9. 9.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  10. 10.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  Google Scholar 

  11. 11.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  Google Scholar 

  13. 13.

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article  Google Scholar 

  14. 14.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2017).

    Article  Google Scholar 

  15. 15.

    Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).

    Article  Google Scholar 

  16. 16.

    Daughton, J. M. Magnetoresistive memory technology. Thin Solid Films 216, 162–168 (1992).

    Article  Google Scholar 

  17. 17.

    Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    Article  Google Scholar 

  18. 18.

    Wang, M. et al. Spin flop and crystalline anisotropic magnetoresistance in CuMnAs. Phys. Rev. B 101, 094429 (2020).

    Article  Google Scholar 

  19. 19.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  Google Scholar 

  20. 20.

    Kimel, A. V. & Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189–200 (2019).

    Article  Google Scholar 

  21. 21.

    Wörnle, M. S. et al. Current-induced fragmentation of antiferromagnetic domains. Preprint at https://arxiv.org/pdf/1912.05287.pdf (2019).

  22. 22.

    Wadley, P. et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013).

    Article  Google Scholar 

  23. 23.

    Krizek, F. et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 4, 014409 (2020).

    Article  Google Scholar 

  24. 24.

    Shi, J. et al. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat. Electron. 3, 92–98 (2020).

    Article  Google Scholar 

  25. 25.

    Phillips, J. C. Axiomatic theories of ideal stretched exponential relaxation. J. Non Cryst. Solids 352, 4490–4494 (2006).

    Article  Google Scholar 

  26. 26.

    Aharoni, A. Effect of a magnetic field on the superparamagnetic relaxation time. Phys. Rev. 177, 793 (1969).

    Article  Google Scholar 

  27. 27.

    Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  Google Scholar 

  28. 28.

    Gerstner, W. & Kistler, V. M. Spiking Neuron Models (Cambridge Univ. Press, 2002).

  29. 29.

    Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).

    Article  Google Scholar 

  30. 30.

    Li, Y. Y. Domain walls in antiferromagnets and the weak ferromagnetism of Fe2O3. Phys. Rev. 101, 1450–1454 (1956).

    Article  Google Scholar 

  31. 31.

    Gregg, J. F. et al. Giant magnetoresistive effects in a single element magnetic thin film. Phys. Rev. Lett. 77, 1580–1583 (1996).

    Article  Google Scholar 

  32. 32.

    Máca, F. et al. Physical properties of the tetragonal CuMnAs: a first-principles study. Phys. Rev. B 96, 094406 (2017).

    Article  Google Scholar 

  33. 33.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    Article  Google Scholar 

  34. 34.

    Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Kastil and M. Míšek for experimental support. This work was supported in part by the Ministry of Education of the Czech Republic infrastructure grants CzechNanoLab no. LM2018110, no. LNSM-LNSpin and MGLM no. LM2018096, the Czech Science Foundation grant no. 19-28375X, the Charles University grant GA UK nos. 886317 and 1582417, the EU FET Open RIA grant no. 766566 and the Engineering and Physical Sciences Research Council grant no. EP/P019749/1. P.W. acknowledges support from the Royal Society through a University Research Fellowship. T.J. acknowledges support from the Neuron Foundation Prize and K.O. from the Neuron Foundation Impuls grant.

Author information

Affiliations

Authors

Contributions

K.O., Z.K. and T.J. conceived and designed the project. Z.K., M.S., J.Z., F.K., K.O., P.W., K.W.E., S.R., O.J.A., F.M. and S.S.D. performed experiments. K.O., P.N., P.W., K.W.E., J.W., X.M., M.S.W., P.G. and T.J. analysed data. V.N., F.K. and R.P.C. contributed materials. K.O. and T.J. wrote the manuscript.

Corresponding author

Correspondence to T. Jungwirth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Notes 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kašpar, Z., Surýnek, M., Zubáč, J. et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat Electron 4, 30–37 (2021). https://doi.org/10.1038/s41928-020-00506-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing