Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppression of the field-like torque for efficient magnetization switching in a spin–orbit ferromagnet

Abstract

Spin–orbit torque magnetization switching is an efficient method to control magnetization. In perpendicularly magnetized films, two types of spin–orbit torque are induced by driving a current: a damping-like torque and a field-like torque. The damping-like torque assists magnetization switching, but a large field-like torque pushes the magnetization towards the in-plane direction, resulting in a larger critical switching current density and making deterministic switching challenging. Control of the field-like torque strength is difficult because it is intrinsic to the material system used. Here, we show that the field-like term can be suppressed in a spin–orbit ferromagnetic single layer of (Ga,Mn)As by a current-induced Oersted field due to its non-uniform current distribution, making the damping-like torque term (the result of strong Dresselhaus spin–orbit coupling) dominant. The Oersted field can be controlled by the film thickness, resulting in an extremely low switching current density of 4.6 × 104 A cm–2. This strategy can thus provide an efficient approach to spin–orbit torque magnetization switching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the sample structure and illustration of torques.
Fig. 2: SOT switching for t ≤ 10 nm when J \([\bar 110]\) and schematic of the fields and torques.
Fig. 3: SOT switching for t ≥ 13 nm (40 K) when J \([\bar 110]\).
Fig. 4: SOT switching for t ≥ 13 nm (40 K) when J \([110]\) and schematic of the fields and torques.
Fig. 5: LLG simulation results and comparison with the experimental results.

Data availability

The data that support the plots within this paper and other findings of this study are available at https://doi.org/10.6084/m9.figshare.12961430.v1. Source data are provided with this paper.

References

  1. 1.

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  2. 2.

    Shi, G. Y. et al. Spin-orbit torque in MgO/CoFeB/Ta/CoFeB/MgO symmetric structure with interlayer antiferromagnetic coupling. Phys. Rev. B 95, 104435 (2017).

    Article  Google Scholar 

  3. 3.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  4. 4.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  5. 5.

    Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  Google Scholar 

  6. 6.

    Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  7. 7.

    An, H., Kageyama, Y., Kanno, Y., Enishi, N. & Ando, K. Spin–torque generator engineered by natural oxidation of Cu. Nat. Commun. 7, 13069 (2016).

    Article  Google Scholar 

  8. 8.

    Jiang, M. et al. Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet. Nat. Commun. 10, 2590 (2019).

    Article  Google Scholar 

  9. 9.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

  10. 10.

    Hai, P. N., Nguyen, H. D. K., Yao, K. & Ueda, Y. Conductive BiSb topological insulator with colossal spin Hall effect for ultra-low power spin-orbit-torque switching. Proc. SPIE 10732, 107320U (2018).

    Google Scholar 

  11. 11.

    Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Article  Google Scholar 

  12. 12.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  Google Scholar 

  13. 13.

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  Google Scholar 

  14. 14.

    Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    Article  Google Scholar 

  15. 15.

    Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    Article  Google Scholar 

  16. 16.

    Ohya, S., Takata, K. & Tanaka, M. Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs. Nat. Phys. 7, 342–347 (2011).

    Article  Google Scholar 

  17. 17.

    Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  Google Scholar 

  18. 18.

    Lee, S. et al. Field-free manipulation of magnetization alignments in a Fe/GaAs/GaMnAs multilayer by spin-orbit-induced magnetic fields. Sci. Rep. 7, 10162 (2017).

    Article  Google Scholar 

  19. 19.

    Kobayashi, M. et al. Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As. Phys. Rev. B 89, 205204 (2014).

    Article  Google Scholar 

  20. 20.

    Muneta, I., Ohya, S., Terada, H. & Tanaka, M. Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor. Nat. Commun. 7, 12013 (2016).

    Article  Google Scholar 

  21. 21.

    Muneta, I., Kanaki, T., Ohya, S. & Tanaka, M. Artificial control of the bias-voltage dependence of tunnelling-anisotropic magnetoresistance using quantization in a single-crystal ferromagnet. Nat. Commun. 8, 15387 (2017).

    Article  Google Scholar 

  22. 22.

    Campion, R. P. et al. The growth of GaMnAs films by molecular beam epitaxy using arsenic dimers. J. Cryst. Growth 251, 311–316 (2003).

    Article  Google Scholar 

  23. 23.

    Mathieu, R. et al. Magnetization of ultrathin (Ga,Mn)As layers. Phys. Rev. B 68, 184421 (2003).

    Article  Google Scholar 

  24. 24.

    Luo, J. et al. Uniform annealing effect of electron irradiation on ferromagnetic GaMnAs thin films. J. Magn. Magn. Mater. 422, 124–127 (2017).

    Article  Google Scholar 

  25. 25.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  26. 26.

    Shi, G. et al. Spin–orbit torque switching in MgO/CoFeB/Ta/CoFeB/MgO heterostructures with a critical current density of 105 A/cm2. Jpn. J. Appl. Phys. 56, 100303 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (no. 16H02095 and no. 18H03860), the CREST program of the Japan Science and Technology Agency (JPMJCR1777), the Spintronics Research Network of Japan (Spin-RNJ) and the China Scholarship Council (no. 201706210086).

Author information

Affiliations

Authors

Contributions

Sample preparation: M.J. and H.A.; measurements: M.J.; data analysis: M.J. and S.S.; writing and project planning: M.J., S.O. and M.T.

Corresponding authors

Correspondence to Miao Jiang, Shinobu Ohya or Masaaki Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Discussion and Table 1.

Supplementary Data

Statistical source data for Supplementary Fig. 2.

Supplementary Data

Statistical source data for Supplementary Fig. 3.

Supplementary Data

Statistical source data for Supplementary Fig. 4.

Supplementary Data

Statistical source data for Supplementary Fig. 5.

Supplementary Data

Statistical source data for Supplementary Fig. 6.

Supplementary Data

Statistical source data for Supplementary Fig. 7.

Supplementary Data

Statistical source data for Supplementary Fig. 8.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Asahara, H., Sato, S. et al. Suppression of the field-like torque for efficient magnetization switching in a spin–orbit ferromagnet. Nat Electron 3, 751–756 (2020). https://doi.org/10.1038/s41928-020-00500-w

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing