Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What’s next for negative capacitance electronics?

Progress towards low-power electronics based on negative capacitance has been slow. For the field to develop, the gap between fundamental research on ferroelectric materials and the engineering of practical devices needs to be bridged.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Roadmap for negative capacitance electronics.

References

  1. 1.

    Laws, D. 13 sextillion & counting: the long & winding road to the most frequently manufactured human artifact in history. CHM Blog (2018); https://go.nature.com/2Vwzy4J

  2. 2.

    Salahuddin, S. & Datta, S. Nano Lett. 8, 405–410 (2008).

    Article  Google Scholar 

  3. 3.

    Landauer, R. Collect. Phenom. 2, 167–170 (1976).

    Google Scholar 

  4. 4.

    Khan, A. I. et al. Appl. Phys. Lett. 99, 113501 (2011).

    Article  Google Scholar 

  5. 5.

    Khan, A. I. et al. Nat. Mater. 14, 182–186 (2015).

    Article  Google Scholar 

  6. 6.

    Zubko, P. et al. Nature 534, 524–528 (2016).

    Article  Google Scholar 

  7. 7.

    Kittl, J. A. et al. Appl. Phys. Lett. 113, 042904 (2018).

    Article  Google Scholar 

  8. 8.

    Alam, M. A., Si, M. & Ye, P. D. Appl. Phys. Lett. 114, 090401 (2019).

    Article  Google Scholar 

  9. 9.

    Íñiguez, J. et al. Nat. Rev. Mater. 4, 243–256 (2019).

    Article  Google Scholar 

  10. 10.

    Ma, T. P. & Han, J.-P. IEEE Electron Device Lett. 32, 386–388 (2002).

    Article  Google Scholar 

  11. 11.

    Böscke, T. S. et al. Appl. Phys. Lett. 99, 102903 (2011).

    Article  Google Scholar 

  12. 12.

    Müller, J. et al. Nano Lett. 12, 4318–4323 (2012).

    Article  Google Scholar 

  13. 13.

    Mistry, K. et al. In 2007 IEEE Int. Electron Devices Meeting (IEDM) 247–250 (2007).

  14. 14.

    Kil, D.-S. et al. In 2006 Symp. on VLSI Technology 38–39 (2006).

  15. 15.

    S. Dünkel et al. In 2017 IEEE Int. Electron Devices Meeting (IEDM) 19.7.1–19.7.4 (2017).

  16. 16.

    Hoffmann, M. et al. Adv. Funct. Mater. 26, 8643–8649 (2016).

    Article  Google Scholar 

  17. 17.

    Kwon, D. et al. IEEE Electron Device Lett. 39, 300–303 (2017).

    Article  Google Scholar 

  18. 18.

    Kwon, D. et al. IEEE Electron Device Lett. 40, 993–996 (2019).

    Article  Google Scholar 

  19. 19.

    Kobayashi, M. & Hiramoto, T. AIP Adv. 6, 025113 (2016).

    Article  Google Scholar 

  20. 20.

    Cao, W. & Banerjee, K. Nat. Comm. 11, 196 (2020).

    Article  Google Scholar 

  21. 21.

    Yadav, A. K. et al. Nature 565, 468–471 (2019).

    Article  Google Scholar 

  22. 22.

    Hoffmann, M. et al. Nanoscale 10, 10891–10899 (2018).

    Article  Google Scholar 

  23. 23.

    Hoffmann, M. et al. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 727–730 (2018).

  24. 24.

    Hoffmann, M. et al. Nature 565, 464–467 (2019).

    Article  Google Scholar 

  25. 25.

    Kim, K. D. et al. Adv. Funct. Mater. 29, 1808228 (2019).

    Article  Google Scholar 

  26. 26.

    Shimizu, T. et al. Sci. Rep. 6, 32931 (2016).

    Article  Google Scholar 

  27. 27.

    Park, H. W. et al. Adv. Mater. 31, 1805266 (2019).

    Article  Google Scholar 

  28. 28.

    Tian, X. et al. Appl. Phys. Lett. 112, 102902 (2018).

    Article  Google Scholar 

  29. 29.

    Si, M. et al. Nat. Nanotechnol. 13, 24–28 (2018).

    Article  Google Scholar 

  30. 30.

    Hoffmann, M. et al. Adv. Energy Mater. 9, 1901154 (2019).

    Article  Google Scholar 

  31. 31.

    Kim, Y. J. et al. Nano Lett. 16, 4375–4381 (2016).

    Article  Google Scholar 

  32. 32.

    Luk’yanchuk, I. et al. Comm. Phys. 2, 22 (2019).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Hoffmann.

Additional information

Editorial note: This article has been peer reviewed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, M., Slesazeck, S., Schroeder, U. et al. What’s next for negative capacitance electronics?. Nat Electron 3, 504–506 (2020). https://doi.org/10.1038/s41928-020-00474-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing