Progress towards low-power electronics based on negative capacitance has been slow. For the field to develop, the gap between fundamental research on ferroelectric materials and the engineering of practical devices needs to be bridged.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Laws, D. 13 sextillion & counting: the long & winding road to the most frequently manufactured human artifact in history. CHM Blog (2018); https://go.nature.com/2Vwzy4J
Salahuddin, S. & Datta, S. Nano Lett. 8, 405–410 (2008).
Landauer, R. Collect. Phenom. 2, 167–170 (1976).
Khan, A. I. et al. Appl. Phys. Lett. 99, 113501 (2011).
Khan, A. I. et al. Nat. Mater. 14, 182–186 (2015).
Zubko, P. et al. Nature 534, 524–528 (2016).
Kittl, J. A. et al. Appl. Phys. Lett. 113, 042904 (2018).
Alam, M. A., Si, M. & Ye, P. D. Appl. Phys. Lett. 114, 090401 (2019).
Íñiguez, J. et al. Nat. Rev. Mater. 4, 243–256 (2019).
Ma, T. P. & Han, J.-P. IEEE Electron Device Lett. 32, 386–388 (2002).
Böscke, T. S. et al. Appl. Phys. Lett. 99, 102903 (2011).
Müller, J. et al. Nano Lett. 12, 4318–4323 (2012).
Mistry, K. et al. In 2007 IEEE Int. Electron Devices Meeting (IEDM) 247–250 (2007).
Kil, D.-S. et al. In 2006 Symp. on VLSI Technology 38–39 (2006).
S. Dünkel et al. In 2017 IEEE Int. Electron Devices Meeting (IEDM) 19.7.1–19.7.4 (2017).
Hoffmann, M. et al. Adv. Funct. Mater. 26, 8643–8649 (2016).
Kwon, D. et al. IEEE Electron Device Lett. 39, 300–303 (2017).
Kwon, D. et al. IEEE Electron Device Lett. 40, 993–996 (2019).
Kobayashi, M. & Hiramoto, T. AIP Adv. 6, 025113 (2016).
Cao, W. & Banerjee, K. Nat. Comm. 11, 196 (2020).
Yadav, A. K. et al. Nature 565, 468–471 (2019).
Hoffmann, M. et al. Nanoscale 10, 10891–10899 (2018).
Hoffmann, M. et al. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 727–730 (2018).
Hoffmann, M. et al. Nature 565, 464–467 (2019).
Kim, K. D. et al. Adv. Funct. Mater. 29, 1808228 (2019).
Shimizu, T. et al. Sci. Rep. 6, 32931 (2016).
Park, H. W. et al. Adv. Mater. 31, 1805266 (2019).
Tian, X. et al. Appl. Phys. Lett. 112, 102902 (2018).
Si, M. et al. Nat. Nanotechnol. 13, 24–28 (2018).
Hoffmann, M. et al. Adv. Energy Mater. 9, 1901154 (2019).
Kim, Y. J. et al. Nano Lett. 16, 4375–4381 (2016).
Luk’yanchuk, I. et al. Comm. Phys. 2, 22 (2019).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial note: This article has been peer reviewed.
Rights and permissions
About this article
Cite this article
Hoffmann, M., Slesazeck, S., Schroeder, U. et al. What’s next for negative capacitance electronics?. Nat Electron 3, 504–506 (2020). https://doi.org/10.1038/s41928-020-00474-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-020-00474-9
This article is cited by
-
Quasiperiodic circuit quantum electrodynamics
npj Quantum Information (2023)
-
Circuit quantization with time-dependent magnetic fields for realistic geometries
npj Quantum Information (2022)
-
The ferroelectric field-effect transistor with negative capacitance
npj Computational Materials (2022)
-
Vibrational fingerprints of ferroelectric HfO2
npj Quantum Materials (2022)
-
The fundamentals and applications of ferroelectric HfO2
Nature Reviews Materials (2022)