Progress towards low-power electronics based on negative capacitance has been slow. For the field to develop, the gap between fundamental research on ferroelectric materials and the engineering of practical devices needs to be bridged.
This is a preview of subscription content
Access options
Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

References
Laws, D. 13 sextillion & counting: the long & winding road to the most frequently manufactured human artifact in history. CHM Blog (2018); https://go.nature.com/2Vwzy4J
Salahuddin, S. & Datta, S. Nano Lett. 8, 405–410 (2008).
Landauer, R. Collect. Phenom. 2, 167–170 (1976).
Khan, A. I. et al. Appl. Phys. Lett. 99, 113501 (2011).
Khan, A. I. et al. Nat. Mater. 14, 182–186 (2015).
Zubko, P. et al. Nature 534, 524–528 (2016).
Kittl, J. A. et al. Appl. Phys. Lett. 113, 042904 (2018).
Alam, M. A., Si, M. & Ye, P. D. Appl. Phys. Lett. 114, 090401 (2019).
Íñiguez, J. et al. Nat. Rev. Mater. 4, 243–256 (2019).
Ma, T. P. & Han, J.-P. IEEE Electron Device Lett. 32, 386–388 (2002).
Böscke, T. S. et al. Appl. Phys. Lett. 99, 102903 (2011).
Müller, J. et al. Nano Lett. 12, 4318–4323 (2012).
Mistry, K. et al. In 2007 IEEE Int. Electron Devices Meeting (IEDM) 247–250 (2007).
Kil, D.-S. et al. In 2006 Symp. on VLSI Technology 38–39 (2006).
S. Dünkel et al. In 2017 IEEE Int. Electron Devices Meeting (IEDM) 19.7.1–19.7.4 (2017).
Hoffmann, M. et al. Adv. Funct. Mater. 26, 8643–8649 (2016).
Kwon, D. et al. IEEE Electron Device Lett. 39, 300–303 (2017).
Kwon, D. et al. IEEE Electron Device Lett. 40, 993–996 (2019).
Kobayashi, M. & Hiramoto, T. AIP Adv. 6, 025113 (2016).
Cao, W. & Banerjee, K. Nat. Comm. 11, 196 (2020).
Yadav, A. K. et al. Nature 565, 468–471 (2019).
Hoffmann, M. et al. Nanoscale 10, 10891–10899 (2018).
Hoffmann, M. et al. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 727–730 (2018).
Hoffmann, M. et al. Nature 565, 464–467 (2019).
Kim, K. D. et al. Adv. Funct. Mater. 29, 1808228 (2019).
Shimizu, T. et al. Sci. Rep. 6, 32931 (2016).
Park, H. W. et al. Adv. Mater. 31, 1805266 (2019).
Tian, X. et al. Appl. Phys. Lett. 112, 102902 (2018).
Si, M. et al. Nat. Nanotechnol. 13, 24–28 (2018).
Hoffmann, M. et al. Adv. Energy Mater. 9, 1901154 (2019).
Kim, Y. J. et al. Nano Lett. 16, 4375–4381 (2016).
Luk’yanchuk, I. et al. Comm. Phys. 2, 22 (2019).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial note: This article has been peer reviewed.
Rights and permissions
About this article
Cite this article
Hoffmann, M., Slesazeck, S., Schroeder, U. et al. What’s next for negative capacitance electronics?. Nat Electron 3, 504–506 (2020). https://doi.org/10.1038/s41928-020-00474-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-020-00474-9
Further reading
-
Circuit quantization with time-dependent magnetic fields for realistic geometries
npj Quantum Information (2022)
-
The ferroelectric field-effect transistor with negative capacitance
npj Computational Materials (2022)
-
Vibrational fingerprints of ferroelectric HfO2
npj Quantum Materials (2022)
-
The fundamentals and applications of ferroelectric HfO2
Nature Reviews Materials (2022)
-
Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors
Nature (2022)