A transverse tunnelling field-effect transistor made from a van der Waals heterostructure

Abstract

Semiconductor devices that rely on quantum tunnelling could be of use in logic, memory and radiofrequency applications. Tunnel devices that exhibit negative differential resistance typically follow an operating principle in which the tunnelling current contributes directly to the drive current. Here, we report a tunnelling field-effect transistor made from a black phosphorus/Al2O3/black phosphorus van der Waals heterostructure in which the tunnelling current is in the transverse direction with respect to the drive current. Through an electrostatic effect, this tunnelling current can induce a drastic change in the output current, leading to a tunable negative differential resistance with a peak-to-valley ratio of more than 100 at room temperature. Our device also exhibits abrupt switching, with a body factor (the relative change in gate voltage with respect to that of the surface potential) that is one-tenth of the Boltzmann limit for conventional transistors across a wide temperature range.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device structure and characterization.
Fig. 2: Four-terminal tunnel device with NDR.
Fig. 3: Tunable NDR behaviour.
Fig. 4: Abrupt switching in TT-FETs.
Fig. 5: Abrupt switching at various temperatures.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Maekawa, T. et al. Frequency increase in terahertz oscillation of resonant tunnelling diode up to 1.55 THz by reduced slot-antenna length. Electron. Lett. 50, 1214–1216 (2014).

  2. 2.

    Feiginov, M. et al. Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011).

  3. 3.

    Koyama, Y. et al. Oscillations up to 1.40 THz from resonant-tunneling-diode-based oscillators with integrated patch antennas. Appl. Phys. Express 6, 064102 (2013).

  4. 4.

    Jin, N. et al. Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR. IEEE Electron Device Lett. 25, 646–648 (2004).

  5. 5.

    Gan, K.-J., Tsai, C.-S., Chen, Y.-W. & Yeh, W.-K. Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid-State Electron. 54, 1637–1640 (2010).

  6. 6.

    Berezowski, K. S. & Vrudhula, S. B. Multiple-valued logic circuits design using negative differential resistance devices. In 37th Int. Symposium on Multiple-Valued Logic (ISMVL'07) (IEEE, 2007).

  7. 7.

    Gong, C., Zhang, H., Wang, W. & Colombo, L. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

  8. 8.

    Shewchun, J. & Temple, V. Theoretical tunneling current characteristics of the SIS (semiconductor–insulator–semiconductor) diode. J. Appl. Phys. 43, 5051–5061 (1972).

  9. 9.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

  10. 10.

    Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017).

  11. 11.

    Mou, X., Register, L. F., MacDonald, A. H. & Banerjee, S. K. Bilayer pseudospin junction transistor (BiSJT) for ‘beyond-CMOS’ logic. IEEE Trans. Electron Devices 64, 4759–4762 (2017).

  12. 12.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  13. 13.

    Yan, R. et al. GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature 555, 183–189 (2018).

  14. 14.

    Zhang, C. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 4, 015026 (2017).

  15. 15.

    Lin, Y.-C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015).

  16. 16.

    Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

  17. 17.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

  18. 18.

    Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).

  19. 19.

    Chen, J., Reed, M., Rawlett, A. & Tour, J. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

  20. 20.

    Perrin, M. L. et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 9, 830–834 (2014).

  21. 21.

    Bhattacharyya, S. et al. Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nat. Mater. 5, 19–22 (2006).

  22. 22.

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

  23. 23.

    Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

  24. 24.

    Burg, G. W. et al. Coherent interlayer tunneling and negative differential resistance with high current density in double bilayer graphene–WSe2 heterostructures. Nano Lett. 17, 3919–3925 (2017).

  25. 25.

    Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016).

  26. 26.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

  27. 27.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

  28. 28.

    Li, T. et al. High field transport of high performance black phosphorus transistors. Appl. Phys. Lett. 110, 372 (2017).

  29. 29.

    Xiong, X. et al. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Device Lett. 39, 127–130 (2017).

  30. 30.

    Castellanos-Gomez, A. Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015).

  31. 31.

    Cai, Y., Zhang, G. & Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014).

  32. 32.

    Asahina, H. & Morita, A. Band structure and optical properties of black phosphorus. J. Phys. C 17, 1839–1852 (2000).

  33. 33.

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

  34. 34.

    Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior and scaling. ACS Nano 8, 10035–10042 (2014).

  35. 35.

    Li, X. et al. Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale 8, 3572–3578 (2016).

  36. 36.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  37. 37.

    Kastalsky, A. & Luryi, S. Novel real-space hot-electron transfer devices. IEEE Electron Device Lett. 4, 334–336 (1983).

  38. 38.

    Kastalsky, A. et al. A field-effect transistor with a negative differential resistance. IEEE Electron Device Lett. 5, 57–60 (1984).

  39. 39.

    Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

  40. 40.

    Ota, H. et al. Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration. In IEEE Int. Electron Devices Meeting 318–321 (IEEE, 2016).

  41. 41.

    Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

  42. 42.

    Ganjipour, B., Wallentin, J., Borgström, M. T., Samuelson, L. & Thelander, C. Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano 6, 3109–3113 (2012).

  43. 43.

    Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In IEEE Int. Electron Devices Meeting 785–788 (IEEE, 2011).

  44. 44.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

  45. 45.

    Then, H. W. et al. Experimental observation and physics of ‘negative’ capacitance and steeper than 40 mV/decade subthreshold swing in Al0.83In0.17N/AlN/GaN MOS-HEMT on SiC substrate. In IEEE Int. Electron Devices Meeting 691–694 (IEEE, 2013).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 91964106 and 61874162), the 111 Project (B18001) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB30000000). We thank the staff at the Center of Micro-fabrication and Characterization of Wuhan National Laboratory for Optoelectronics and Huazhong University of Science and Technology Analytical and Testing Center for support with electron-beam lithography, electron-beam evaporation and transmission electron microscopy.

Author information

Y.W. proposed and supervised the project. Y.W., X.X. and M.H. designed the experiment. X.X. and M.H. performed device fabrication and characterization. B.H. performed the simulations. X.L., F.L., S.L., M.T., T.L. and J.S. assisted with device fabrication and discussions. X.X., M.H. and Y.W. analysed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Correspondence to Yanqing Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Note 1 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Huang, M., Hu, B. et al. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat Electron 3, 106–112 (2020). https://doi.org/10.1038/s41928-019-0364-5

Download citation