Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated terahertz radar based on leaky-wave coherence tomography

Abstract

Terahertz wave radar offers a higher resolution and smaller aperture compared with microwave radar. However, despite the emergence of terahertz sources and detectors suitable for radar front ends, the integration of a phased-array radar system remains challenging due to the lack of phase shifters and circulators, the basic components for beam steering and input–output isolation. Here we show that leaky-wave coherence tomography, which can integrate a terahertz radar system using a pair of reverse-connected leaky-wave antennas, can be used to implement beam steering and homodyne detection in one package. Our approach can detect direction and range without using phase shifters, circulators, half-mirrors, lenses or mechanical scanners, providing a compact, penetrating and high-resolution radar system suitable for mobile devices and drones. To illustrate the capabilities of the technique, we use it to create a remote heartbeat detector that can measure the chest displacement of a person through their clothes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Input and output of LWA.
Fig. 2: Structure of the terahertz radar based on leaky-wave coherence tomography.
Fig. 3: Characterization of the device.
Fig. 4: Radar measurement.
Fig. 5: Phase-sensitive measurement.
Fig. 6: Demonstration of human heartbeat detection by phase-sensitive measurement.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Hasch, J. et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech. 60, 845–860 (2012).

    Google Scholar 

  2. 2.

    Mitomo, T. et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J. Solid-State Circuits 45, 928–937 (2010).

    Google Scholar 

  3. 3.

    Lee, J., Li, Y. & Hung, M. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J. Solid-State Circuits 45, 2746–2756 (2010).

    Google Scholar 

  4. 4.

    Cooper, K. B. et al. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1, 169–182 (2011).

    Article  Google Scholar 

  5. 5.

    Llombart, N., Dengler, R. J. & Cooper, K. B. Terahertz antenna system for a near-video-rate radar imager. IEEE Antennas Propag. Mag. 52, 251–259 (2010).

    Google Scholar 

  6. 6.

    Appleby, R. & Anderton, R. N. Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95, 1683–1690 (2007).

    Google Scholar 

  7. 7.

    Li, C., Lubecke, V. M., Boric-Lubecke, O. & Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 61, 2046–2060 (2013).

    Google Scholar 

  8. 8.

    Arbabian, A., Callender, S., Kang, S., Rangwala, M. & Niknejad, A. M. A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition. IEEE J. Solid-State Circuits 48, 1055–1071 (2013).

    Google Scholar 

  9. 9.

    Kuo, H. C. et al. A fully integrated 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection. IEEE Trans. Microw. Theory Tech. 64, 1018–1028 (2016).

    Google Scholar 

  10. 10.

    Zhu, Y., Zhu, Y., Zhao, B. Y. & Zheng, H. Reusing 60 GHz radios for mobile radar imaging. In Proc. 21st Annual International Conference on Mobile Computing and Networking—MobiCom ’15 103–116 (ACM Press, 2015).

  11. 11.

    Pauli, M. et al. Miniaturized millimeter-wave radar sensor for high-accuracy applications. IEEE Trans. Microw. Theory Tech. 65, 1707–1715 (2017).

    Google Scholar 

  12. 12.

    Huegler, P., Roos, F., Schartel, M., Geiger, M. & Waldschmidt, C. Radar taking off: new capabilities for UAVs. IEEE Microw. Mag. 19, 43–53 (2018).

    Google Scholar 

  13. 13.

    Lien, J. et al. Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35, 142 (2016).

  14. 14.

    Nasr, I. et al. A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short-range communications. IEEE J. Solid-State Circuits 51, 2066–2076 (2016).

    Google Scholar 

  15. 15.

    Zhou, Z., Cao, Z. & Pi, Y. Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures. Sensors 18, E10 (2018).

    Google Scholar 

  16. 16.

    Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    Google Scholar 

  17. 17.

    Skolnik, M. Radar Handbook (McGraw-Hill, 2008).

  18. 18.

    Headland, D., Monnai, Y., Abbott, D., Fumeaux, C. & Withayachumnankul, W. Tutorial: terahertz beamforming, from concepts to realizations. APL Photon. 3, 051101 (2018).

    Google Scholar 

  19. 19.

    Cooper, K. B. et al. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Trans. Microw. Theory Tech. 56, 2771–2778 (2008).

    Google Scholar 

  20. 20.

    Llombart, N., Cooper, K. B., Dengler, R. J., Bryllert, T. & Siegel, P. H. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager. IEEE Trans. Antennas Propag. 58, 1834–1841 (2010).

    Google Scholar 

  21. 21.

    Nagatsuma, T., Nishii, H. & Ikeo, T. Terahertz imaging based on optical coherence tomography. Photon. Res. 2, 64–69 (2014).

    Google Scholar 

  22. 22.

    Grajal, J. et al. Compact radar front-end for an imaging radar at 300 GHz. IEEE Trans. Terahertz Sci. Technol. 7, 268–273 (2017).

    Google Scholar 

  23. 23.

    Yang, X., Pi, Y., Liu, T. & Wang, H. Three-dimensional imaging of space debris with space-based terahertz radar. IEEE Sens. J. 18, 1063–1072 (2018).

    Google Scholar 

  24. 24.

    Dobroiu, A., Wakasugi, R., Shirakawa, Y., Suzuki, S. & Asada, M. Absolute and precise terahertz-wave radar based on an amplitude-modulated resonant-tunneling-diode oscillator. Photonics 5, 52 (2018).

    Google Scholar 

  25. 25.

    Mostajeran, A. et al. A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system. IEEE Trans. Microw. Theory Tech. 67, 429–442 (2019).

    Google Scholar 

  26. 26.

    Bryllert, T., Drakinskiy, V., Cooper, K. B. & Stake, J. Integrated 200-240-GHz FMCW radar transceiver module. IEEE Trans. Microw. Theory Tech. 61, 3808–3815 (2013).

    Google Scholar 

  27. 27.

    Leal-Sevillano, C. A. et al. Compact duplexing for a 680-GHz radar using a waveguide orthomode transducer. IEEE Trans. Microw. Theory Tech. 62, 2833–2842 (2014).

    Google Scholar 

  28. 28.

    Grzyb, J., Statnikov, K., Sarmah, N., Heinemann, B. & Pfeiffer, U. R. A 210-270-GHz circularly polarized FMCW radar with a single-lens-coupled SiGe HBT chip. IEEE Trans. Terahertz Sci. Technol. 6, 771–783 (2016).

    Google Scholar 

  29. 29.

    Reck, T. et al. A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar. IEEE Trans. Terahertz Sci. Technol. 5, 197–206 (2015).

    Google Scholar 

  30. 30.

    Jackson, D. R. & Oliner, A. A. in Modern Antenna Handbook (ed. Balanis, C. A.) 325–367 (Wiley, 2008).

  31. 31.

    Liu, L., Caloz, C. & Itoh, T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett. 38, 1414–1416 (2002).

  32. 32.

    Sievenpiper, D. F. Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface. IEEE Trans. Antennas Propag. 53, 236–247 (2005).

    Google Scholar 

  33. 33.

    Monticone, F., Alù, A., Monticone, B. F., Alu, A. & Alu, A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015).

    Google Scholar 

  34. 34.

    Hon, P. W. C., Liu, Z., Itoh, T. & Williams, B. S. Leaky and bound modes in terahertz metasurfaces made of transmission-line metamaterials. J. Appl. Phys. 113, 1–10 (2013).

    Google Scholar 

  35. 35.

    Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Google Scholar 

  36. 36.

    McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide. Opt. Express 23, 27947–27952 (2015).

    Google Scholar 

  37. 37.

    Murano, K. et al. Low-profile terahertz radar based on broadband leaky-wave beam steering. IEEE Trans. Terahertz Sci. Technol. 7, 1–10 (2016).

    Google Scholar 

  38. 38.

    Murata, K. et al. See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. J. Infrared Millim. Terahertz Waves 39, 210–221 (2018).

    Google Scholar 

  39. 39.

    Honey, R. A flush-mounted leaky-wave antenna with predictable patterns. IEEE Trans. Antennas Propag. 7, 320–329 (1959).

    Google Scholar 

  40. 40.

    Cullens, E. D. et al. Micro-fabricated 130-180 GHz frequency scanning waveguide arrays. IEEE Trans. Antennas Propag. 60, 3647–3653 (2012).

    Google Scholar 

  41. 41.

    Wang, R. K., Ma, Z. & Kirkpatrick, S. J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl. Phys. Lett. 89, 1–4 (2006).

    Google Scholar 

  42. 42.

    White, B. R. et al. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11, 3490 (2010).

    Google Scholar 

  43. 43.

    Wang, R. K., Kirkpatrick, S. & Hinds, M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 90, 164105 (2007).

  44. 44.

    Chen, K. M., Huang, Y., Zhang, J. & Norman, A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. Biomed. Eng. 47, 105–114 (2000).

  45. 45.

    Li, C., Cummings, J., Lam, J., Graves, E. & Wu, W. Radar remote monitoring of vital signs. IEEE Microw. Mag. 10, 47–56 (2009).

  46. 46.

    Peng, Z. et al. A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking. IEEE Trans. Microw. Theory Tech. 65, 1334–1344 (2017).

    Google Scholar 

  47. 47.

    Morbiducci, U., Scalise, L., De Melis, M. & Grigioni, M. Optical vibrocardiography: a novel tool for the optical monitoring of cardiac activity. Ann. Biomed. Eng. 35, 45–58 (2007).

    Google Scholar 

  48. 48.

    Scalise, L. & Morbiducci, U. Non-contact cardiac monitoring from carotid artery using optical vibrocardiography. Med. Eng. Phys. 30, 490–497 (2008).

    Google Scholar 

  49. 49.

    Donati, S. & Norgia, M. Self-mixing interferometry for biomedical signals sensing. IEEE J. Sel. Top. Quantum Electron. 20, 104–111 (2014).

    Google Scholar 

  50. 50.

    Schwering, F. K. & Peng, S. T. Design of dielectric grating antennas for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 31, 199–209 (1983).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) no. 165103002 from the Ministry of Internal Affairs and Communications. Parts of the work are supported by Japan Science and Technology Agency, PRESTO Grant Number JPMJPR18J9, Japan, and Nanotechnology Platform Japan of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), in Takeda Cleanroom with the help of the Nanofabrication Platform Center of the VLSI Design and Education Center (VDEC), University of Tokyo, Japan.

Author information

Affiliations

Authors

Contributions

H.M. designed the device, performed the experiments and wrote the manuscript. I.W. and A.K. supported the experiments and discussions. Y.M. conceived and coordinated the study, supported the device design and experiments and wrote the manuscript.

Corresponding author

Correspondence to Yasuaki Monnai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections, Figs. 1–4 and equations 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, H., Watanabe, I., Kasamatsu, A. et al. Integrated terahertz radar based on leaky-wave coherence tomography. Nat Electron 3, 122–129 (2020). https://doi.org/10.1038/s41928-019-0357-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing