Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains

Abstract

Semiconductor devices based on two-dimensional (2D) transition metal dichalcogenides could help overcome the scaling limits of silicon complementary metal–oxide–semiconductor (CMOS) technology. However, the development of atomically thin devices requires approaches to control the carrier type in 2D semiconductors. Here, we show that a scanning probe can be used to control the polarization of ferroelectric polymers deposited on 2D transition metal dichalcogenides in order to define carrier injection and achieve p-type and n-type doping. The approach allows lateral p–n, n–p, n–n and p–p homojunctions to be arbitrarily formed and altered. Molybdenum ditelluride (MoTe2) p–n homojunction devices constructed using this method exhibit high current rectification ratios of 103 and good optoelectronic properties (responsivity of 1.5 A W−1). Unconventional nonvolatile memory devices are also built, such as an electrical writing and optical reading memory device, without the restrictions of physical source, drain or gate electrodes, and a quasi-nonvolatile memory with a refresh time of 100 s and a write/erase speed of 10 µs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spatially defined doping in MoTe2 using a piezoresponse force microscope-controlled ferroelectric field.
Fig. 2: PL properties of the bilayer MoTe2 tuned using the ferroelectric field at 6 K.
Fig. 3: Ferroelectric field-controlled MoTe2 p–n homojunctions.
Fig. 4: Photoresponse of the p–n junction and devices with other domain patterns.
Fig. 5: An electrical writing and optical reading memory array achieved with the arbitrary domain pattern method.
Fig. 6: Electrical properties of the p–n junction assisted QNV memory.

Data availability

Source data for the graphs that appear in Figs. 26 and Supplementary Figs. 18, 12, 15 and 1720 are available in the Supplementary Information. All other relevant data are available from the corresponding author upon reasonable request.

References

  1. 1.

    Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    Google Scholar 

  2. 2.

    Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Google Scholar 

  3. 3.

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Google Scholar 

  4. 4.

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Google Scholar 

  5. 5.

    Choi, M. S. et al. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8, 9332–9340 (2014).

    Google Scholar 

  6. 6.

    Jin, Y. et al. A van der Waals homojunction: ideal p–n diode behavior in MoSe2. Adv. Mater. 27, 5534–5540 (2015).

    Google Scholar 

  7. 7.

    Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Google Scholar 

  8. 8.

    Luo, W. et al. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 28, 1704539 (2018).

    Google Scholar 

  9. 9.

    Chang, Y. M. et al. Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 30, 1706995 (2018).

    Google Scholar 

  10. 10.

    Qu, D. et al. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 29, 1606433 (2017).

    Google Scholar 

  11. 11.

    Seo, S.-Y. et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1, 512–517 (2018).

    Google Scholar 

  12. 12.

    Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Google Scholar 

  13. 13.

    Baeumer, C. et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 6, 6136 (2015).

    Google Scholar 

  14. 14.

    Chen, J. W. et al. A gate-free monolayer WSe2 pn diode. Nat. Commun. 9, 3143 (2018).

    Google Scholar 

  15. 15.

    Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    Google Scholar 

  16. 16.

    Tian, B. B. et al. Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 7, 11502 (2016).

    Google Scholar 

  17. 17.

    Wang, X. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015).

    Google Scholar 

  18. 18.

    Wu, G. et al. Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology 27, 364002 (2016).

    Google Scholar 

  19. 19.

    Huang, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 6, 87416–87421 (2016).

    Google Scholar 

  20. 20.

    Xiao, Z., Song, J., Ferry, D. K., Ducharme, S. & Hong, X. Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS2. Phys. Rev. Lett. 118, 236801 (2017).

    Google Scholar 

  21. 21.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    Google Scholar 

  22. 22.

    Yang, J. et al. Robust excitons and trions in monolayer MoTe2. ACS Nano 9, 6603–6609 (2015).

    Google Scholar 

  23. 23.

    Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    Google Scholar 

  24. 24.

    Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002).

    Google Scholar 

  25. 25.

    Banwell, T. & Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 36, 291–292 (2000).

    Google Scholar 

  26. 26.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  27. 27.

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Google Scholar 

  28. 28.

    Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

    Google Scholar 

  29. 29.

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Google Scholar 

  30. 30.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Google Scholar 

  31. 31.

    Xu, Z.-Q. et al. Atomically thin lateral p–n junction photodetector with large effective detection area. 2D Mater. 3, 041001 (2016).

    Google Scholar 

  32. 32.

    Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Google Scholar 

  33. 33.

    Chen, Y. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 14, 1703293 (2018).

    Google Scholar 

  34. 34.

    Li, D. et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 12, 901–906 (2017).

    Google Scholar 

  35. 35.

    Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Google Scholar 

  36. 36.

    Späh, R., Elrod, U., Lux‐Steiner, M., Bucher, E. & Wagner, S. pn junctions in tungsten diselenide. Appl. Phys. Lett. 43, 79–81 (1983).

    Google Scholar 

  37. 37.

    Gutierrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013).

    Google Scholar 

  38. 38.

    Lee, H. S. et al. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 8, 3111–3115 (2012).

    Google Scholar 

  39. 39.

    Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004).

    Google Scholar 

  40. 40.

    Lipatov, A., Sharma, P., Gruverman, A. & Sinitskii, A. Optoelectrical molybdenum disulfide (MoS2)-ferroelectric memories. ACS Nano 9, 8089–8098 (2015).

    Google Scholar 

  41. 41.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Major State Basic Research Development Program (grants 2016YFA0203900, 2016YFB0400801 and 2015CB921600) and the Key Research Project of Frontier Sciences of the Chinese Academy of Sciences (grants QYZDB-SSW-JSC016 and QYZDY-SSW-JSC042). We also acknowledge funding from the Strategic Priority Research Program of the Chinese Academy of Sciences (grants XDPB12 and XDB 3000000), the Natural Science Foundation of China (grants 61521001, 61574151, 61574152, 61674158, 61722408, 61734003, 61804055, 61851402 and 61835012), the Natural Science Foundation of Shanghai (grants 16ZR1447600, 17JC1400302 and 17YF1404200), and Opened Fund of the State Key Laboratory of Integrated Optoelectronics No. IOSKL2017KF17.

Author information

Affiliations

Authors

Contributions

J.W. conceived and supervised the research. G.W., Xudong Wang, Y.C. and J.W. fabricated the devices. B.T., W.L., G.W. and Xinran Wang performed the PFM measurements. G.W., Z.W., L.L., J.L., Shuaiqin Wu and Y.C. performed the electrical measurements and Shuang Wu and Shiwei Wu performed the PL properties at low temperature. G.W., W.L. and Xinran Wang obtained the PL images. Z.W., G.W., Y.C. and W.H. performed the optical characterizations. L.L., J.L. and P.Z. were responsible for the experiments with QNV memory devices. P.Z., Xinran Wang, Shiwei Wu, Q.L., W.H. and J.W. advised on the experiments and data analysis. G.W., B.T. and J.W. co-wrote the paper. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Peng Zhou or Jianlu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Notes 1–2 and Table 1.

Supplementary Data 1

Supplementary Data 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Tian, B., Liu, L. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat Electron 3, 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing