Flexible organic photovoltaics based on water-processed silver nanowire electrodes

Article metrics


A key feature of organic electronic devices is their mechanical flexibility. However, the performance of flexible organic optoelectronic devices still lags behind the performance of devices on rigid substrates. This is due, in particular, to the lack of flexible transparent electrodes that simultaneously offer low resistance, high transparency and a smooth surface. Here, we report flexible transparent electrodes created using water-processed silver nanowires and a polyelectrolyte. Due to ionic electrostatic charge repulsion, the nanowires form grid-like structures in a single step, leading to smooth, flexible electrodes that have a sheet resistance of around 10 Ω □−1 and a transmittance of around 92% (excluding the substrate). To illustrate the potential of the approach in organic electronics, we use the flexible electrodes to create organic photovoltaic devices. The devices are tested with different types of donors and acceptors, and exhibit performance comparable to devices based on commercial rigid electrodes. Furthermore, flexible single-junction and tandem devices achieve power conversion efficiencies of 13.1% and 16.5%, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Three typical patterns and their percolation.
Fig. 2: SEM images of FlexAgNEs.
Fig. 3: Optoelectric and mechanical performance of FlexAgNEs.
Fig. 4: OPV applications using FlexAgNEs.
Fig. 5: Performance of flexible and rigid OPV devices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

  2. 2.

    Angmo, D., Larsen-Olsen, T. T., Jørgensen, M., Søndergaard, R. R. & Krebs, F. C. Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. 3, 172–175 (2012).

  3. 3.

    Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

  4. 4.

    Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 6, 809–817 (2012).

  5. 5.

    Hou, J., Inganas, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

  6. 6.

    Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

  7. 7.

    Xiao, Z., Jia, X. & Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 62, 1562–1564 (2017).

  8. 8.

    Kan, B. et al. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci. China Chem. 61, 1307–1313 (2018).

  9. 9.

    Tonzani, S. Time to change the bulb. Nature 459, 312–314 (2009).

  10. 10.

    Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

  11. 11.

    Traverse, C. J., Pandey, R., Barr, M. C. & Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849–860 (2017).

  12. 12.

    Chen, D., Liang, J. & Pei, Q. Flexible and stretchable electrodes for next generation polymer electronics: a review. Sci. China Chem. 59, 659–671 (2016).

  13. 13.

    Rogers, J. A., Someya, T. & Huang, Y. G. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

  14. 14.

    Langley, D. et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24, 452001 (2013).

  15. 15.

    Li, Y. W., Xu, G. Y., Cui, C. H. & Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8, 1701791 (2018).

  16. 16.

    Xiong, S. et al. 12.5% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer. Adv. Mater. 31, 1806616 (2019).

  17. 17.

    Spyropoulos, G. D. et al. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284–3290 (2014).

  18. 18.

    Kang, H., Jung, S., Jeong, S., Kim, G. & Lee, K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015).

  19. 19.

    Luo, B. et al. Colorful flexible polymer tandem solar cells. J. Mater. Chem. C 5, 7884–7889 (2017).

  20. 20.

    Sannicolo, T. et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016).

  21. 21.

    Cao, W. R., Li, J., Chen, H. Z. & Xue, J. G. Transparent electrodes for organic optoelectronic devices: a review. J. Photon. Energy 4, 040990 (2014).

  22. 22.

    Park, S., Vosguerichian, M. & Bao, Z. A. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

  23. 23.

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

  24. 24.

    Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

  25. 25.

    Jiang, Z. et al. Reverse-offset printed ultrathin Ag mesh for robust conformal transparent electrodes for high-performance organic photovoltaics. Adv. Mater. 30, 1707526 (2018).

  26. 26.

    Wu, H. et al. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013).

  27. 27.

    Gu, D., Zhang, C., Wu, Y.-K. & Guo, L. J. Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. ACS Nano 8, 10343–10351 (2014).

  28. 28.

    Shante, V. K. S. & Kirkpatrick, S. An introduction to percolation theory. Adv. Phys. 20, 325–357 (1971).

  29. 29.

    Scardaci, V., Coull, R., Lyons, P. E., Rickard, D. & Coleman, J. N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7, 2621–2628 (2011).

  30. 30.

    Tvingstedt, K. & Inganäs, O. Electrode grids for ITO free organic photovoltaic devices. Adv. Mater. 19, 2893–2897 (2007).

  31. 31.

    Tokuno, T. et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011).

  32. 32.

    Garnett, E. C. et al. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012).

  33. 33.

    Lee, J., Lee, I., Kim, T.-S. & Lee, J.-Y. Efficient welding of silver nanowire networks without post-processing. Small 9, 2887–2894 (2013).

  34. 34.

    Seo, J. H. et al. Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29, 1701479 (2017).

  35. 35.

    Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

  36. 36.

    Narayanan, S., Hajzus, J. R., Treacy, C. E., Bockstaller, M. R. & Porter, L. M. Polymer embedded silver-nanowire network structures—a platform for the facile fabrication of flexible transparent conductors. ECS J. Solid State Sci. Technol. 3, 363–369 (2014).

  37. 37.

    Hösel, M., Søndergaard, R. R., Jørgensen, M. & Krebs, F. C. Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol. 1, 102–107 (2013).

  38. 38.

    Balberg, I. & Binenbaum, N. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Phys. Rev. B 28, 3799–3812 (1983).

  39. 39.

    De, S. & Coleman, J. N. The effects of percolation in nanostructured transparent conductors. MRS Bull. 36, 774–781 (2011).

  40. 40.

    Yang, B. et al. Hybrid effect of crossed alignment and multi-stacking structure on the percolation behavior of silver nanowire networks. J. Disp. Technol. 11, 625–629 (2015).

  41. 41.

    Cho, S. et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346–4357 (2017).

  42. 42.

    Hu, H., Pauly, M., Felix, O. & Decher, G. Spray-assisted alignment of layer-by-layer assembled silver nanowires: a general approach for the preparation of highly anisotropic nano-composite films. Nanoscale 9, 1307–1314 (2017).

  43. 43.

    Allakhverdov, G. R. Coulomb interaction in electrolyte solutions. Dokl. Phys. 57, 221–223 (2012).

  44. 44.

    Yin, Z. et al. Copper nanowire dispersion through an electrostatic dispersion mechanism for high-performance flexible transparent conducting films and optoelectronic devices. ACS Appl. Mater. Interfaces 11, 5264–5275 (2019).

  45. 45.

    Liu, Y. et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017).

  46. 46.

    Chen, Y.-R., Hong, C.-C., Liou, T.-M., Hwang, K. C. & Guo, T.-F. Roller-induced bundling of long silver nanowire networks for strong interfacial adhesion, highly flexible, transparent conductive electrodes. Sci. Rep. 7, 16662 (2017).

  47. 47.

    Zhang, Y. et al. Nonfullerene tandem organic solar cells with high performance of 14.11%. Adv. Mater. 30, 1707508 (2018).

  48. 48.

    Gao, H.-H. et al. A new nonfullerene acceptor with near infrared absorption for high performance ternary-blend organic solar cells with efficiency over 13%. Adv. Sci. 5, 1800307 (2018).

  49. 49.

    He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 174–179 (2015).

  50. 50.

    Huang, W. et al. A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. J. Mater. Chem. A 3, 16313–16319 (2015).

  51. 51.

    Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X. & Janssen, R. A. J. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109, 9505–9516 (2005).

Download references


We gratefully acknowledge financial support from MoST (2016YFA0200200), NSFC (91633301, 21421001, 51873089, 51773095) of China, Tianjin city (17JCJQJC44500, 17JCZDJC31100) and 111 Project (B12015).

Author information

Y.C. conceived and designed the research. Y.S. fabricated the FlexAgNEs and flexible OPV devices and carried out all of the performance studies. L.M. and Y.Z. fabricated and characterized the OPV devices based on rigid ITO electrodes. M.C. and H.G. synthesized 3TT-FIC and O6T-4F. K.Z. and Y.S. built the theoretical physical model. Z.S., S.L., H.W. and J.L. conducted partial characterization of the FlexAgNEs. The manuscript was mainly prepared by Y.C., Y.S., C.L. and X.W., and all authors participated in the manuscript preparation and commented on the manuscript.

Correspondence to Yongsheng Chen.

Ethics declarations

Competing interests

A patent (application no. 201910514527.9) has been filed for the flexible electrodes and devices.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–12 and Figs. 1–22.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chang, M., Meng, L. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron 2, 513–520 (2019) doi:10.1038/s41928-019-0315-1

Download citation