Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices

Abstract

The demand for improved electronic and optoelectronic devices has fuelled the development of epitaxial growth techniques for single-crystalline semiconductors. However, lattice and thermal expansion coefficient mismatch problems limit the options for growth and integration of high-efficiency electronic and photonic devices on dissimilar materials. Accordingly, advanced epitaxial growth and layer lift-off techniques have been developed to address issues relating to lattice mismatch. Here, we review epitaxial growth and layer-transfer techniques for monolithic integration of dissimilar single-crystalline materials for application in advanced electronic and photonic devices. We also examine emerging epitaxial growth techniques that involve two-dimensional materials as an epitaxial release layer and explore future integrated computing systems that could harness both advanced epitaxial growth and lift-off approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of heterogeneous integration of dissimilar materials for electronic and photonic applications.
Fig. 2: Conventional epitaxy techniques.
Fig. 3: Advanced epitaxy techniques.
Fig. 4: Epitaxial lift-off techniques.
Fig. 5: Demonstration of advanced heteroepitaxial techniques for heterogeneous integration of dissimilar materials onto silicon.
Fig. 6: Demonstrations of advanced epitaxial lift-off and transfer techniques for heterogeneous integration of devices onto silicon.

References

  1. 1.

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. 1. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    Google Scholar 

  2. 2.

    Narayan, J. Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper). Acta Mater. 61, 2703–2724 (2013).

    Article  Google Scholar 

  3. 3.

    Orders, P. J. & Usher, B. F. Determination of critical layer thickness in InxGa1-x As/GaAs heterostructures by X-ray diffraction. Appl. Phys. Lett. 50, 980–982 (1987).

    Article  Google Scholar 

  4. 4.

    People, R. & Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures. Appl. Phys. Lett. 47, 322–324 (1985).

    Article  Google Scholar 

  5. 5.

    Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006).

    Article  Google Scholar 

  6. 6.

    Narayan, J. & Larson, B. C. Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 93, 278–285 (2003).

    Article  Google Scholar 

  7. 7.

    Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).

    Article  Google Scholar 

  8. 8.

    Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article  Google Scholar 

  9. 9.

    Quitoriano, N. J. & Fitzgerald, E. A. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation. J. Appl. Phys. 102, 033511 (2007).

    Article  Google Scholar 

  10. 10.

    Bulsara, M. T., Lee, M. L., Lochtefeld, A., Fitzgerald, E. A. & Currie, M. T. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2004).

    Google Scholar 

  11. 11.

    Schaffler, F., Tobben, D., Herzog, H.-J., Abstreiter, G. & Hollander, B. High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer. Semicond. Sci. Technol. 7, 260–266 (1992).

    Article  Google Scholar 

  12. 12.

    Guter, W. et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 2007–2010 (2009).

    Article  Google Scholar 

  13. 13.

    Kazi, Z. I., Thilakan, P., Egawa, T., Umeno, M. & Jimbo, T. Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 40, 4903–4906 (2001).

    Article  Google Scholar 

  14. 14.

    Lourdudoss, S. Heteroepitaxy and selective area heteroepitaxy for silicon photonics. Curr. Opin. Solid State Mater. Sci. 16, 91–99 (2012).

    Article  Google Scholar 

  15. 15.

    Koma, A., Sunouchi, K. & Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B 3, 724 (1985).

    Article  Google Scholar 

  16. 16.

    Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).

    Article  Google Scholar 

  17. 17.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  Google Scholar 

  18. 18.

    Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999).

    Article  Google Scholar 

  19. 19.

    Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    Article  Google Scholar 

  20. 20.

    Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article  Google Scholar 

  21. 21.

    Davis, R. F. et al. Conventional and pendeo-epitaxial growth of GaN(0001) thin films on Si(111) substrates. J. Cryst. Growth 231, 335–341 (2001).

    Article  Google Scholar 

  22. 22.

    Orzali, T. et al. Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping. J. Appl. Phys. 120, 085308 (2016).

  23. 23.

    Orzali, T. et al. GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction. J. Appl. Phys. 118, 105307 (2015).

    Article  Google Scholar 

  24. 24.

    Schmid, H. et al. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 106, 233101 (2015).

    Article  Google Scholar 

  25. 25.

    Convertino, C. et al. InGaAs FinFETs directly integrated on silicon by selective growth in oxide cavities. Materials 12, 87 (2018).

    Article  Google Scholar 

  26. 26.

    Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987).

    Article  Google Scholar 

  27. 27.

    Wong, W. S. et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75, 1360–1362 (1999).

    Article  Google Scholar 

  28. 28.

    Bedell, S. W. et al. Layer transfer by controlled spalling. J. Phys. D. 46, 152002 (2013).

    Article  Google Scholar 

  29. 29.

    Divay, L. et al. Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 91, 071120 (2007).

    Article  Google Scholar 

  30. 30.

    Cheng, C.-W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).

    Article  Google Scholar 

  31. 31.

    Bauhuis, G. J. et al. Wafer reuse for repeated growth of III–V solar cells. Prog. Photovolt. 18, 155–159 (2010).

    Article  Google Scholar 

  32. 32.

    Lee, K., Zimmerman, J. D., Xiao, X., Sun, K. & Forrest, S. R. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111, 033527 (2012).

    Article  Google Scholar 

  33. 33.

    Schermer, J. J. et al. Epitaxial lift-off for large area thin film III/V devices. Phys. Status Solidi A 202, 501–508 (2005).

    Article  Google Scholar 

  34. 34.

    Bandaru, P. & Yablonovitch, E. Semiconductor surface–molecule interactions. J. Electrochem. Soc. 149, G599–G602 (2002).

    Article  Google Scholar 

  35. 35.

    Shiu, K.-T., Zimmerman, J., Wang, H. & Forrest, S. R. Ultrathin film, high specific power InP solar cells on flexible plastic substrates. Appl. Phys. Lett. 95, 223503 (2009).

    Article  Google Scholar 

  36. 36.

    Moon, S., Kim, K., Kim, Y., Heo, J. & Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 6, 30107 (2016).

    Article  Google Scholar 

  37. 37.

    van Hoof, C., de Raedt, W., van Rossum, M. & Borghs, G. MESFET lift-off from GaAs substrate to glass host. Electron. Lett. 25, 136–137 (1989).

    Article  Google Scholar 

  38. 38.

    Englhard, M. et al. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth. J. Appl. Phys. 120, 045301 (2016).

    Article  Google Scholar 

  39. 39.

    Polentier, I. et al. Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off. Electron. Lett. 26, 925–927 (1990).

    Article  Google Scholar 

  40. 40.

    Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    Article  Google Scholar 

  41. 41.

    Trong Tue, P., Shimoda, T. & Takamura, Y. Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer. J. Micromech. Microeng. 27, 014004 (2017).

    Article  Google Scholar 

  42. 42.

    Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).

    Article  Google Scholar 

  43. 43.

    Li, L. et al. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 17, 6575–6582 (2017).

    Article  Google Scholar 

  44. 44.

    Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article  Google Scholar 

  45. 45.

    Linder, V., Gates, B. D., Ryan, D., Parviz, B. A. & Whitesides, G. M. Water-soluble sacrificial layers for surface micromachining. Small 1, 730–736 (2005).

    Article  Google Scholar 

  46. 46.

    Wu, F. L., Ou, S. L., Horng, R. H. & Kao, Y. C. Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).

    Article  Google Scholar 

  47. 47.

    Voncken, M. M. A. J., Schermer, J. J., Bauhuis, G. J., van Niftrik, A. T. J. & Larsen, P. K. Strain-accelerated HF etching of AIAs for epitaxial lift-off. J. Phys. Condens. Matter 16, 3585–3596 (2004).

    Article  Google Scholar 

  48. 48.

    Kim, Y. et al. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil. Appl. Phys. Lett. 111, 233509 (2017).

    Article  Google Scholar 

  49. 49.

    Kayes, B. M. et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 Sun illumination. In 37th IEEE Photovoltaic Specialists Conference 000004–000008 (IEEE, 2011).

  50. 50.

    Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    Article  Google Scholar 

  51. 51.

    Gerhard, C. & Stappenbeck, M. Impact of the polishing suspension concentration on laser damage of classically manufactured and plasma post-processed zinc crown glass surfaces. Appl. Sci. 8, 1556 (2018).

    Article  Google Scholar 

  52. 52.

    Giuliano, C. R. Laser‐induced damage in transparent dielectrics: ion beam polishing as a means of increasing surface damage thresholds. Appl. Phys. Lett. 21, 39–41 (1972).

    Article  Google Scholar 

  53. 53.

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006).

    Article  Google Scholar 

  54. 54.

    Uemoto, Y. et al. Gate injection transistor (GIT) — a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54, 3393–3399 (2007).

    Article  Google Scholar 

  55. 55.

    Wei, J. et al. Low on-resistance normally-off GaN double-channel metal–oxide–semiconductor high-electron-mobility transistor. IEEE Electron Device Lett. 36, 1287–1290 (2015).

    Article  Google Scholar 

  56. 56.

    Kato, S., Satoh, Y., Sasaki, H., Masayuki, I. & Yoshida, S. C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J. Cryst. Growth 298, 831–834 (2007).

    Article  Google Scholar 

  57. 57.

    Kizilyalli, I. C., Edwards, A. P., Aktas, O., Prunty, T. & Bour, D. Vertical power p–n diodes based on bulk GaN. IEEE Trans. Electron Devices 62, 414–422 (2015).

    Article  Google Scholar 

  58. 58.

    Sun, M., Zhang, Y., Gao, X. & Palacios, T. High-performance GaN vertical fin power transistors on bulk GaN substrates. IEEE Electron Device Lett. 38, 509–512 (2017).

    Article  Google Scholar 

  59. 59.

    Asif Khan, M., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).

    Article  Google Scholar 

  60. 60.

    Nakamura, S. et al. High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn. J. Appl. Phys. 37, L309–L312 (1998).

    Article  Google Scholar 

  61. 61.

    Wierer, J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013).

    Article  Google Scholar 

  62. 62.

    Sun, Y. et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 7, 13 (2018).

    Article  Google Scholar 

  63. 63.

    Youngim, K. et al. Spalling of a thin Si layer by electrodeposit-assisted stripping. Appl. Phys. Express 6, 116502 (2013).

    Article  Google Scholar 

  64. 64.

    Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609–5615 (2012).

    Article  Google Scholar 

  65. 65.

    Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315–320 (2013).

    Article  Google Scholar 

  66. 66.

    Bedell, S. W. et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2, 141–147 (2012).

    Article  Google Scholar 

  67. 67.

    Onyegam, E. U. et al. Exfoliated, thin, flexible germanium heterojunction solar cell with record FF=58.1%. Sol. Energy Mater. Sol. Cells 111, 206–211 (2013).

    Article  Google Scholar 

  68. 68.

    Shahrjerdi, D. et al. Ultralight high-efficiency flexible InGaP/(In)GaAs tandem solar cells on plastic. Adv. Energy Mater. 3, 566–571 (2013).

    Article  Google Scholar 

  69. 69.

    Sweet, C. A. et al. Controlled exfoliation of (100) GaAs-based devices by spalling fracture. Appl. Phys. Lett. 108, 011906 (2016).

    Article  Google Scholar 

  70. 70.

    Bedell, S. W. et al. Vertical light-emitting diode fabrication by controlled spalling. Appl. Phys. Express 6, 112301 (2013).

    Article  Google Scholar 

  71. 71.

    Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).

    Article  Google Scholar 

  72. 72.

    Suo, Z. & Hutchinson, J. W. Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25, 1337–1353 (1989).

    Article  Google Scholar 

  73. 73.

    Tatavarti, S. R. et al. Epitaxial lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell. Sol. Energy Mater. Sol. Cells 185, 153–157 (2018).

    Article  Google Scholar 

  74. 74.

    Deshpande, V. et al. DC and RF characterization of InGaAs replacement metal gate (RMG) nFETs on SiGe-OI FinFETs fabricated by 3D monolithic integration. Solid State Electron. 128, 87–91 (2017).

    Article  Google Scholar 

  75. 75.

    Deshpande, V. et al. Advanced 3D monolithic hybrid CMOS with sub-50 nm gate inverters featuring replacement metal gate (RMG)-InGaAs nFETs on SiGe-OI Fin pFETs. Tech. Dig. Int. Electron Devices Meet. 8.8.1–8.8.4 (2015).

  76. 76.

    Wirths, S. et al. Room-temperature lasing from monolithically integrated GaAs microdisks on silicon. ACS Nano 12, 2169–2175 (2018).

    Article  Google Scholar 

  77. 77.

    Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article  Google Scholar 

  78. 78.

    Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419–2421 (1990).

    Article  Google Scholar 

  79. 79.

    Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  Google Scholar 

  80. 80.

    Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    Article  Google Scholar 

  81. 81.

    Fan, D., Lee, K. & Forrest, S. R. Flexible thin-film InGaAs photodiode focal plane array. ACS Photon. 3, 670–676 (2016).

    Article  Google Scholar 

  82. 82.

    Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article  Google Scholar 

  83. 83.

    Lee, K., Lee, J., Mazor, B. A. & Forrest, S. R. Transforming the cost of solar-to-electrical energy conversion: integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light Sci. Appl. 4, e288 (2015).

    Article  Google Scholar 

  84. 84.

    Sheng, X. et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13, 593–598 (2014).

    Article  Google Scholar 

  85. 85.

    Fitzgerald, E. A. et al. Relaxed GexSI1−x structues for III–V integration with Si and high mobility two-dimensional elctron gases in Si. J. Vac. Sci. Technol. B 10, 1807–1819 (1992).

    Article  Google Scholar 

  86. 86.

    Xiong, K. et al. AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding. Energy Sci. Eng. 6, 47–55 (2018).

    Article  Google Scholar 

  87. 87.

    Kang, D., Lee, S. M., Kwong, A. & Yoon, J. Dramatically enhanced performance of flexible micro-VCSELs via thermally engineered heterogeneous composite assemblies. Adv. Opt. Mater. 3, 1072–1078 (2015).

    Article  Google Scholar 

  88. 88.

    Kang, D. et al. Compliant, heterogeneously integrated GaAs micro-VCSELs towards wearable and implantable integrated optoelectronics platforms. Adv. Opt. Mater. 2, 373–381 (2014).

    Article  Google Scholar 

  89. 89.

    Yang, H. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).

    Article  Google Scholar 

  90. 90.

    Justice, J. et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 6, 610–614 (2012).

    Article  Google Scholar 

  91. 91.

    Ning, H. et al. Transfer-printing of tunable porous silicon microcavities with embedded emitters. ACS Photon. 1, 1144–1150 (2014).

    Article  Google Scholar 

  92. 92.

    Kim, R. H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    Article  Google Scholar 

  93. 93.

    Deformable, L. D. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Nat. Mater. 325, 136–136 (2009).

    Google Scholar 

  94. 94.

    Bower, C. A. et al. Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes. Photon. Res. 5, 23–29 (2017).

    Article  Google Scholar 

  95. 95.

    Kim, T. Il et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012).

    Article  Google Scholar 

  96. 96.

    Kim, H.-S. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).

    Article  Google Scholar 

  97. 97.

    Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).

    Article  Google Scholar 

  98. 98.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article  Google Scholar 

  99. 99.

    Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Article  Google Scholar 

  100. 100.

    Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  Google Scholar 

  101. 101.

    Bie, Y.-Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    Article  Google Scholar 

  102. 102.

    Hone, J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    Article  Google Scholar 

  103. 103.

    Vlassiouk, I. V. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

    Article  Google Scholar 

  104. 104.

    Cossio, M. L. T. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  105. 105.

    Lee, J. et al. Wafer-scale growth of single-crystal. Science 344, 286–290 (2014).

    Article  Google Scholar 

  106. 106.

    Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  Google Scholar 

  107. 107.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  Google Scholar 

  108. 108.

    Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    Article  Google Scholar 

  109. 109.

    Lee, H. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nat. Mater. 17, 231–236 (2018).

    Article  Google Scholar 

  110. 110.

    Kohen, D. et al. Heteroepitaxial growth of In0.30Ga0.70 As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer. AIP Adv. 6, 085106 (2016).

    Article  Google Scholar 

  111. 111.

    Kapolnek, D. et al. Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl. Phys. Lett. 71, 1204–1206 (1997).

    Article  Google Scholar 

  112. 112.

    Paduano, Q., Snure, M., Siegel, G., Thomson, D. & Look, D. Growth and characteristics of AlGaN/GaN heterostructures on sp 2-bonded BN by metal–organic chemical vapor deposition. J. Mater. Res. 31, 2204–2213 (2016).

    Article  Google Scholar 

  113. 113.

    Linthicum, K. et al. Pendeoepitaxy of gallium nitride thin films. Appl. Phys. Lett. 75, 196–198 (1999).

    Article  Google Scholar 

  114. 114.

    Chun, J. et al. Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scripta Mater. 77, 13–16 (2014).

    Article  Google Scholar 

  115. 115.

    Matthews, J. W. Epitaxial Growth (Academic Press, 1975).

  116. 116.

    Zhang, Z. et al. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article  Google Scholar 

  117. 117.

    Panish, M. B. Molecular beam epitaxy. Science 208, 916–922 (1980).

    Article  Google Scholar 

  118. 118.

    Nakamura, S., Harada, Y. & Seno, M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 58, 2021–2023 (1991).

    Article  Google Scholar 

  119. 119.

    Greer, J. A. History and current status of commercial pulsed laser deposition equipment. J. Phys. D 47, 034005 (2014).

    Article  Google Scholar 

  120. 120.

    Narayan, J., Dovidenko, K., Sharma, A. K. & Oktyabrsky, S. Defects and interfaces in epitaxial ZnO/α-Al2O3and AlN/ZnO/α-Al2O3heterostructures. J. Appl. Phys. 84, 2597–2601 (1998).

    Article  Google Scholar 

  121. 121.

    Franchi, S., Trevisi, G., Seravalli, L. & Frigeri, P. Quantum dot nanostructures and molecular beam epitaxy. Prog. Cryst. Growth Charact. Mater. 47, 166–195 (2003).

    Article  Google Scholar 

  122. 122.

    Nakamura, F., Kim, Y. D., Yoon, E., Forbes, D. V. & Coleman, J. J. Thickness monitoring of GaAs growth by surface photoabsorption in metalorganic chemical vapor deposition. J. Appl. Phys. 83, 775–778 (1998).

    Article  Google Scholar 

  123. 123.

    Gatzen, H., Saile, V., Leuthold, J. Micro and Nanofabrication (Springer, 2005).

Download references

Acknowledgements

We acknowledge funding from the Department of Energy, Office of Energy Efficiency and Renewable Energy, and Defense Advanced Research Projects Agency (award numbers 027049-00001 and D19AP00037).

Author information

Affiliations

Authors

Contributions

H.Kum, K.L., and J.K. conceived the project. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Kyusang Lee or Jeehwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kum, H., Lee, D., Kong, W. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat Electron 2, 439–450 (2019). https://doi.org/10.1038/s41928-019-0314-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing