Abstract
The demand for improved electronic and optoelectronic devices has fuelled the development of epitaxial growth techniques for single-crystalline semiconductors. However, lattice and thermal expansion coefficient mismatch problems limit the options for growth and integration of high-efficiency electronic and photonic devices on dissimilar materials. Accordingly, advanced epitaxial growth and layer lift-off techniques have been developed to address issues relating to lattice mismatch. Here, we review epitaxial growth and layer-transfer techniques for monolithic integration of dissimilar single-crystalline materials for application in advanced electronic and photonic devices. We also examine emerging epitaxial growth techniques that involve two-dimensional materials as an epitaxial release layer and explore future integrated computing systems that could harness both advanced epitaxial growth and lift-off approaches.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Fully automatic transfer and measurement system for structural superlubric materials
Nature Communications Open Access 10 October 2023
-
Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates
Nano Convergence Open Access 30 August 2023
-
Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer
Nature Communications Open Access 03 May 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. 1. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).
Narayan, J. Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper). Acta Mater. 61, 2703–2724 (2013).
Orders, P. J. & Usher, B. F. Determination of critical layer thickness in InxGa1-x As/GaAs heterostructures by X-ray diffraction. Appl. Phys. Lett. 50, 980–982 (1987).
People, R. & Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures. Appl. Phys. Lett. 47, 322–324 (1985).
Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006).
Narayan, J. & Larson, B. C. Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 93, 278–285 (2003).
Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).
Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).
Quitoriano, N. J. & Fitzgerald, E. A. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation. J. Appl. Phys. 102, 033511 (2007).
Bulsara, M. T., Lee, M. L., Lochtefeld, A., Fitzgerald, E. A. & Currie, M. T. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2004).
Schaffler, F., Tobben, D., Herzog, H.-J., Abstreiter, G. & Hollander, B. High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer. Semicond. Sci. Technol. 7, 260–266 (1992).
Guter, W. et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 2007–2010 (2009).
Kazi, Z. I., Thilakan, P., Egawa, T., Umeno, M. & Jimbo, T. Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
Lourdudoss, S. Heteroepitaxy and selective area heteroepitaxy for silicon photonics. Curr. Opin. Solid State Mater. Sci. 16, 91–99 (2012).
Koma, A., Sunouchi, K. & Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B 3, 724 (1985).
Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).
Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999).
Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).
Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).
Davis, R. F. et al. Conventional and pendeo-epitaxial growth of GaN(0001) thin films on Si(111) substrates. J. Cryst. Growth 231, 335–341 (2001).
Orzali, T. et al. Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping. J. Appl. Phys. 120, 085308 (2016).
Orzali, T. et al. GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction. J. Appl. Phys. 118, 105307 (2015).
Schmid, H. et al. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 106, 233101 (2015).
Convertino, C. et al. InGaAs FinFETs directly integrated on silicon by selective growth in oxide cavities. Materials 12, 87 (2018).
Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987).
Wong, W. S. et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75, 1360–1362 (1999).
Bedell, S. W. et al. Layer transfer by controlled spalling. J. Phys. D. 46, 152002 (2013).
Divay, L. et al. Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 91, 071120 (2007).
Cheng, C.-W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).
Bauhuis, G. J. et al. Wafer reuse for repeated growth of III–V solar cells. Prog. Photovolt. 18, 155–159 (2010).
Lee, K., Zimmerman, J. D., Xiao, X., Sun, K. & Forrest, S. R. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111, 033527 (2012).
Schermer, J. J. et al. Epitaxial lift-off for large area thin film III/V devices. Phys. Status Solidi A 202, 501–508 (2005).
Bandaru, P. & Yablonovitch, E. Semiconductor surface–molecule interactions. J. Electrochem. Soc. 149, G599–G602 (2002).
Shiu, K.-T., Zimmerman, J., Wang, H. & Forrest, S. R. Ultrathin film, high specific power InP solar cells on flexible plastic substrates. Appl. Phys. Lett. 95, 223503 (2009).
Moon, S., Kim, K., Kim, Y., Heo, J. & Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 6, 30107 (2016).
van Hoof, C., de Raedt, W., van Rossum, M. & Borghs, G. MESFET lift-off from GaAs substrate to glass host. Electron. Lett. 25, 136–137 (1989).
Englhard, M. et al. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth. J. Appl. Phys. 120, 045301 (2016).
Polentier, I. et al. Monolithic integration of an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off. Electron. Lett. 26, 925–927 (1990).
Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).
Trong Tue, P., Shimoda, T. & Takamura, Y. Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer. J. Micromech. Microeng. 27, 014004 (2017).
Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).
Li, L. et al. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 17, 6575–6582 (2017).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Linder, V., Gates, B. D., Ryan, D., Parviz, B. A. & Whitesides, G. M. Water-soluble sacrificial layers for surface micromachining. Small 1, 730–736 (2005).
Wu, F. L., Ou, S. L., Horng, R. H. & Kao, Y. C. Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
Voncken, M. M. A. J., Schermer, J. J., Bauhuis, G. J., van Niftrik, A. T. J. & Larsen, P. K. Strain-accelerated HF etching of AIAs for epitaxial lift-off. J. Phys. Condens. Matter 16, 3585–3596 (2004).
Kim, Y. et al. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil. Appl. Phys. Lett. 111, 233509 (2017).
Kayes, B. M. et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 Sun illumination. In 37th IEEE Photovoltaic Specialists Conference 000004–000008 (IEEE, 2011).
Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).
Gerhard, C. & Stappenbeck, M. Impact of the polishing suspension concentration on laser damage of classically manufactured and plasma post-processed zinc crown glass surfaces. Appl. Sci. 8, 1556 (2018).
Giuliano, C. R. Laser‐induced damage in transparent dielectrics: ion beam polishing as a means of increasing surface damage thresholds. Appl. Phys. Lett. 21, 39–41 (1972).
Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006).
Uemoto, Y. et al. Gate injection transistor (GIT) — a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54, 3393–3399 (2007).
Wei, J. et al. Low on-resistance normally-off GaN double-channel metal–oxide–semiconductor high-electron-mobility transistor. IEEE Electron Device Lett. 36, 1287–1290 (2015).
Kato, S., Satoh, Y., Sasaki, H., Masayuki, I. & Yoshida, S. C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J. Cryst. Growth 298, 831–834 (2007).
Kizilyalli, I. C., Edwards, A. P., Aktas, O., Prunty, T. & Bour, D. Vertical power p–n diodes based on bulk GaN. IEEE Trans. Electron Devices 62, 414–422 (2015).
Sun, M., Zhang, Y., Gao, X. & Palacios, T. High-performance GaN vertical fin power transistors on bulk GaN substrates. IEEE Electron Device Lett. 38, 509–512 (2017).
Asif Khan, M., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).
Nakamura, S. et al. High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn. J. Appl. Phys. 37, L309–L312 (1998).
Wierer, J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013).
Sun, Y. et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 7, 13 (2018).
Youngim, K. et al. Spalling of a thin Si layer by electrodeposit-assisted stripping. Appl. Phys. Express 6, 116502 (2013).
Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609–5615 (2012).
Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315–320 (2013).
Bedell, S. W. et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2, 141–147 (2012).
Onyegam, E. U. et al. Exfoliated, thin, flexible germanium heterojunction solar cell with record FF=58.1%. Sol. Energy Mater. Sol. Cells 111, 206–211 (2013).
Shahrjerdi, D. et al. Ultralight high-efficiency flexible InGaP/(In)GaAs tandem solar cells on plastic. Adv. Energy Mater. 3, 566–571 (2013).
Sweet, C. A. et al. Controlled exfoliation of (100) GaAs-based devices by spalling fracture. Appl. Phys. Lett. 108, 011906 (2016).
Bedell, S. W. et al. Vertical light-emitting diode fabrication by controlled spalling. Appl. Phys. Express 6, 112301 (2013).
Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).
Suo, Z. & Hutchinson, J. W. Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25, 1337–1353 (1989).
Tatavarti, S. R. et al. Epitaxial lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell. Sol. Energy Mater. Sol. Cells 185, 153–157 (2018).
Deshpande, V. et al. DC and RF characterization of InGaAs replacement metal gate (RMG) nFETs on SiGe-OI FinFETs fabricated by 3D monolithic integration. Solid State Electron. 128, 87–91 (2017).
Deshpande, V. et al. Advanced 3D monolithic hybrid CMOS with sub-50 nm gate inverters featuring replacement metal gate (RMG)-InGaAs nFETs on SiGe-OI Fin pFETs. Tech. Dig. Int. Electron Devices Meet. 8.8.1–8.8.4 (2015).
Wirths, S. et al. Room-temperature lasing from monolithically integrated GaAs microdisks on silicon. ACS Nano 12, 2169–2175 (2018).
Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).
Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419–2421 (1990).
Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
Fan, D., Lee, K. & Forrest, S. R. Flexible thin-film InGaAs photodiode focal plane array. ACS Photon. 3, 670–676 (2016).
Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).
Lee, K., Lee, J., Mazor, B. A. & Forrest, S. R. Transforming the cost of solar-to-electrical energy conversion: integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light Sci. Appl. 4, e288 (2015).
Sheng, X. et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13, 593–598 (2014).
Fitzgerald, E. A. et al. Relaxed GexSI1−x structues for III–V integration with Si and high mobility two-dimensional elctron gases in Si. J. Vac. Sci. Technol. B 10, 1807–1819 (1992).
Xiong, K. et al. AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding. Energy Sci. Eng. 6, 47–55 (2018).
Kang, D., Lee, S. M., Kwong, A. & Yoon, J. Dramatically enhanced performance of flexible micro-VCSELs via thermally engineered heterogeneous composite assemblies. Adv. Opt. Mater. 3, 1072–1078 (2015).
Kang, D. et al. Compliant, heterogeneously integrated GaAs micro-VCSELs towards wearable and implantable integrated optoelectronics platforms. Adv. Opt. Mater. 2, 373–381 (2014).
Yang, H. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).
Justice, J. et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 6, 610–614 (2012).
Ning, H. et al. Transfer-printing of tunable porous silicon microcavities with embedded emitters. ACS Photon. 1, 1144–1150 (2014).
Kim, R. H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).
Deformable, L. D. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Nat. Mater. 325, 136–136 (2009).
Bower, C. A. et al. Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes. Photon. Res. 5, 23–29 (2017).
Kim, T. Il et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012).
Kim, H.-S. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).
Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).
Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).
Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).
Bie, Y.-Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).
Hone, J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).
Vlassiouk, I. V. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).
Cossio, M. L. T. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Lee, J. et al. Wafer-scale growth of single-crystal. Science 344, 286–290 (2014).
Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).
Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).
Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).
Lee, H. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nat. Mater. 17, 231–236 (2018).
Kohen, D. et al. Heteroepitaxial growth of In0.30Ga0.70 As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer. AIP Adv. 6, 085106 (2016).
Kapolnek, D. et al. Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl. Phys. Lett. 71, 1204–1206 (1997).
Paduano, Q., Snure, M., Siegel, G., Thomson, D. & Look, D. Growth and characteristics of AlGaN/GaN heterostructures on sp 2-bonded BN by metal–organic chemical vapor deposition. J. Mater. Res. 31, 2204–2213 (2016).
Linthicum, K. et al. Pendeoepitaxy of gallium nitride thin films. Appl. Phys. Lett. 75, 196–198 (1999).
Chun, J. et al. Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scripta Mater. 77, 13–16 (2014).
Matthews, J. W. Epitaxial Growth (Academic Press, 1975).
Zhang, Z. et al. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).
Panish, M. B. Molecular beam epitaxy. Science 208, 916–922 (1980).
Nakamura, S., Harada, Y. & Seno, M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 58, 2021–2023 (1991).
Greer, J. A. History and current status of commercial pulsed laser deposition equipment. J. Phys. D 47, 034005 (2014).
Narayan, J., Dovidenko, K., Sharma, A. K. & Oktyabrsky, S. Defects and interfaces in epitaxial ZnO/α-Al2O3and AlN/ZnO/α-Al2O3heterostructures. J. Appl. Phys. 84, 2597–2601 (1998).
Franchi, S., Trevisi, G., Seravalli, L. & Frigeri, P. Quantum dot nanostructures and molecular beam epitaxy. Prog. Cryst. Growth Charact. Mater. 47, 166–195 (2003).
Nakamura, F., Kim, Y. D., Yoon, E., Forbes, D. V. & Coleman, J. J. Thickness monitoring of GaAs growth by surface photoabsorption in metalorganic chemical vapor deposition. J. Appl. Phys. 83, 775–778 (1998).
Gatzen, H., Saile, V., Leuthold, J. Micro and Nanofabrication (Springer, 2005).
Acknowledgements
We acknowledge funding from the Department of Energy, Office of Energy Efficiency and Renewable Energy, and Defense Advanced Research Projects Agency (award numbers 027049-00001 and D19AP00037).
Author information
Authors and Affiliations
Contributions
H.Kum, K.L., and J.K. conceived the project. All authors contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kum, H., Lee, D., Kong, W. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat Electron 2, 439–450 (2019). https://doi.org/10.1038/s41928-019-0314-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-019-0314-2
This article is cited by
-
Applications of remote epitaxy and van der Waals epitaxy
Nano Convergence (2023)
-
Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review
Nano Convergence (2023)
-
Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates
Nano Convergence (2023)
-
Photonic van der Waals integration from 2D materials to 3D nanomembranes
Nature Reviews Materials (2023)
-
Fully automatic transfer and measurement system for structural superlubric materials
Nature Communications (2023)