Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets


Antiferromagnetic materials offer ultrafast spin dynamics and could be used to build devices that are orders of magnitude faster than those based on ferromagnetic materials. Spin-transfer torque is key to the electrical control of spins and has been demonstrated in ferromagnetic spintronics. However, experimental exploration of spin-transfer torque in antiferromagnets remains limited, despite a number of theoretical studies. Here, we report an experimental examination of the effects of spin-transfer torque on the motion of domain walls in antiferromagnetically coupled ferrimagnets. Using a ferrimagnetic gadolinium–iron–cobalt (GdFeCo) alloy in which Gd and FeCo moments are coupled antiferromagnetically, we find that non-adiabatic spin-transfer torque acts like a staggered magnetic field, providing efficient control of the domain walls. We also show that the non-adiabaticity parameter of the spin-transfer torque is significantly larger than the Gilbert damping parameter, in contrast to the case of non-adiabatic spin-transfer torque in ferromagnets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of the measurement set-up and the DW velocity as a function of the magnetic field.
Fig. 2: Field and current contributions to DW velocity as a function of temperature.
Fig. 3: Ratio between the current-induced DW mobility μC and the field-induced DW mobility μF.

Data availability

All data that support the findings of this study are available from the corresponding authors on request.


  1. 1.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  Google Scholar 

  2. 2.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  Google Scholar 

  3. 3.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).

    Article  Google Scholar 

  5. 5.

    Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  Google Scholar 

  6. 6.

    Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).

    Article  Google Scholar 

  7. 7.

    Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    Article  Google Scholar 

  8. 8.

    Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).

    Article  Google Scholar 

  9. 9.

    Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Article  Google Scholar 

  10. 10.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Article  Google Scholar 

  11. 11.

    Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Article  Google Scholar 

  12. 12.

    Yamane, Y., Ieda, J. & Sinova, J. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).

    Article  Google Scholar 

  13. 13.

    Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  Google Scholar 

  14. 14.

    Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  Google Scholar 

  15. 15.

    Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  Google Scholar 

  16. 16.

    Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).

    Article  Google Scholar 

  17. 17.

    Xiao, J., Zangwill, A. & Stiles, M. D. Spin-transfer torque for continuously variable magnetization. Phys. Rev. B 73, 054428 (2006).

    Article  Google Scholar 

  18. 18.

    Tserkovnyak, Y., Skadsem, H. J., Brataas, A. & Bauer, G. E. W. Current-induced magnetization dynamics in disordered itinerant ferromagnets. Phys. Rev. B 74, 144405 (2006).

    Article  Google Scholar 

  19. 19.

    Tatara, G., Kohno, H., Shibata, J., Lemaho, Y. & Lee, K.-J. Spin torque and force due to current for general spin textures. J. Phys. Soc. Jpn 76, 54707 (2007).

    Article  Google Scholar 

  20. 20.

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J. Magn. Magn. Mater. 320, 1282–1292 (2008).

    Article  Google Scholar 

  21. 21.

    Boulle, O. et al. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls. Phys. Rev. Lett. 101, 216601 (2008).

    Article  Google Scholar 

  22. 22.

    Garate, I., Gilmore, K., Stiles, M. D. & MacDonald, A. H. Nonadiabatic spin-transfer torque in real materials. Phys. Rev. B 79, 104416 (2009).

    Article  Google Scholar 

  23. 23.

    Burrowes, C. et al. Non-adiabatic spin-torques in narrow magnetic domain walls. Nat. Phys. 6, 17–21 (2009).

    Article  Google Scholar 

  24. 24.

    Gilmore, K., Garate, I., MacDonald, A. H. & Stiles, M. D. First-principles calculation of the nonadiabatic spin transfer torque in Ni and Fe. Phys. Rev. B 84, 224412 (2011).

    Article  Google Scholar 

  25. 25.

    Sekiguchi, K. et al. Time-domain measurement of current-induced spin wave dynamics. Phys. Rev. Lett. 108, 017203 (2012).

    Article  Google Scholar 

  26. 26.

    Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404(R) (2017).

    Article  Google Scholar 

  27. 27.

    Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741–744 (2005).

    Article  Google Scholar 

  28. 28.

    Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).

    Article  Google Scholar 

  29. 29.

    Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  Google Scholar 

  30. 30.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  Google Scholar 

  31. 31.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article  Google Scholar 

  32. 32.

    Kaiser, C., Panchula, A. F. & Parkin, S. S. P. Finite tunneling spin polarization at the compensation point of rare-earth-metal–transition-metal alloys. Phys. Rev. Lett. 95, 047202 (2005).

    Article  Google Scholar 

  33. 33.

    Hirata, Y. et al. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Phys. Rev. B 97, 220403(R) (2018).

    Article  Google Scholar 

  34. 34.

    Kim, D.-H. et al. Low magnetic damping of ferrimagnetic GdFeCo alloys. Phys. Rev. Lett. 112, 127203 (2019).

    Article  Google Scholar 

  35. 35.

    Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation. Phys. Rev. B 73, 220402(R) (2006).

    Article  Google Scholar 

  36. 36.

    Kamra, A., Troncoso, R. E., Belzig, W. & Brataas, A. Gilbert damping phenomenology for two-sublattice magnets. Phys. Rev. B 98, 184402 (2018).

    Article  Google Scholar 

  37. 37.

    Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article  Google Scholar 

  38. 38.

    Thevenard, L. et al. Spin transfer and spin–orbit torques in in-plane magnetized (Ga,Mn)As tracks. Phys. Rev. B 95, 054422 (2017).

    Article  Google Scholar 

Download references


This work was supported by the JSPS KAKENHI (grants 15H05702, 26870300, 26870304, 26103002, 26103004, 25220604 and 2604316), the Collaborative Research Program of the Institute for Chemical Research, Kyoto University and the R&D project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS). This work was partly supported by the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University. D.-H.K. was supported as an Overseas Researcher under the Postdoctoral Fellowship of JSPS (grant P16314). S.K.K. and Y.T. acknowledge support from the Army Research Office under contract no. W911NF-14-1-0016. K.-J.K. was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2017R1C1B2009686 and NRF-2016R1A5A1008184). K.-J.L. acknowledges support from the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02.

Author information




T.Okuno, D.-H.K., K.-J.K. and T.Ono planned the study. Y.F., H.Y. and A.T. grew and optimized the GdFeCo film. T.Okuno and D.-H.K. fabricated the device and performed the experiment. Y.H., T.N. and W.S.H. helped with the experiment. S.-H.O., S.K.K., Y.T. and K.-J.L. provided theory. T.Okuno, D.-H.K., S.K.K., Y.S., T.M., K.-J.K., K.-J.L. and T.Ono analysed the results. T.Okuno, D.-H.K., S.K.K., K.-J.K., K.-J.L. and T.Ono wrote the manuscript.

Corresponding authors

Correspondence to Duck-Ho Kim, Se Kwon Kim, Kyung-Jin Lee or Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes 1–5, Figs. 1–4 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okuno, T., Kim, DH., Oh, SH. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat Electron 2, 389–393 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing