Van der Waals thin-film electronics

Abstract

The development of emerging applications based on large-area flexible and wearable devices requires solution-processable thin-film electronics. Organic semiconductors can be processed in solution, but typically suffer from relatively low performance and insufficient stability in ambient conditions. Inorganic nanostructures, however, can be processed in solution while retaining the excellent electronic performance and structural stability of crystalline inorganic materials. In particular, a range of two-dimensional inorganic nanosheets can be dispersed in various solvents as stable colloidal inks. These nanosheets can be assembled into continuous thin films in which neighbouring sheets interact via van der Waals forces with few interfacial trapping states. The resulting tiled nanosheets, which we term two-dimensional van der Waals thin films, offer significant potential in thin-film electronics. Here we explore the development of van der Waals thin films and their use in high-performance large-area electronics. We examine the formulation of the nanosheet inks and their scalable assembly into van der Waals thin films and devices. We also consider their application in large-area wearable electronics and the challenges that exist in delivering practical devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Thin films constructed from 0D, 1D and 2D nanostructures.
Fig. 2: Production routes to solution-processable 2D nanostructures.
Fig. 3: Solution-processable 2D conducting, semiconducting and insulating nanosheets.
Fig. 4: Van der Waals thin-film assembly using various solution processing techniques.
Fig. 5: Flexible/stretchable large-area electronics from vdW thin films.

References

  1. 1.

    Reuss, R. H. et al. Macroelectronics: perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005).

    Google Scholar 

  2. 2.

    Reuss, R. H., Hopper, D. G. & Park, J.-G. Macroelectronics. MRS Bull. 31, 447–454 (2006).

    Google Scholar 

  3. 3.

    Rogers, J. A. et al. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001).

    Google Scholar 

  4. 4.

    Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003). This paper reported the early effort in thin-film electronics based on assembled 1D semiconductor nanowire thin films.

    Google Scholar 

  5. 5.

    Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    Google Scholar 

  6. 6.

    Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    Google Scholar 

  7. 7.

    Yuan, Y. et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014).

    Google Scholar 

  8. 8.

    Newman, C. R. et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16, 4436–4451 (2004).

    Google Scholar 

  9. 9.

    Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).

    Google Scholar 

  10. 10.

    Ridley, B. A., Nivi, B. & Jacobson, J. M. All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999). This paper reported the early effort in thin-film electronics constructed from 0D quantum dots.

    Google Scholar 

  11. 11.

    Choi, J.-H. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352, 205–208 (2016). This paper presented state-of-the-art thin-film electronics on a flexible substrate constructed from 0D quantum dots.

    Google Scholar 

  12. 12.

    Mitzi, D. B. Solution processing of chalcogenide semiconductors via dimensional reduction. Adv. Mater. 21, 3141–3158 (2009).

    Google Scholar 

  13. 13.

    Lin, Z. et al. Cosolvent approach for solution-processable electronic thin films. ACS Nano 9, 4398–4405 (2015).

    Google Scholar 

  14. 14.

    Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Google Scholar 

  15. 15.

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    Google Scholar 

  16. 16.

    Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Google Scholar 

  17. 17.

    Xu, F. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    Google Scholar 

  18. 18.

    Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010).

    Google Scholar 

  19. 19.

    Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    Google Scholar 

  20. 20.

    Snow, E. S., Novak, J. P., Campbell, P. M. & Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82, 2145–2147 (2003). This paper presented the early exploration of nanotube networks for thin-film electronics.

    Google Scholar 

  21. 21.

    Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Google Scholar 

  22. 22.

    Xiang, L. et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1, 237–245 (2018).

    Google Scholar 

  23. 23.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  24. 24.

    Lin, Z. et al. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 14, 6547–6553 (2014). This paper presented the concept of assembling van der Waals thin films from solution-processable 2D nanostructures.

    Google Scholar 

  25. 25.

    Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). This paper demonstrated the formulation of high-quality phase-pure semiconducting MoS 2 ink solution and the assembly of van der Waals thin films for integrated logic circuits.

    Google Scholar 

  26. 26.

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, Elsevier, 2011).

    Google Scholar 

  27. 27.

    Jung, W. et al. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 137, 7266–7269 (2015).

    Google Scholar 

  28. 28.

    Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat. Commun. 10, 712 (2019).

    Google Scholar 

  29. 29.

    Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    Google Scholar 

  30. 30.

    Sun, Y., Fujisawa, K., Terrones, M. & Schaak, R. E. Solution synthesis of few-layer WTe2 and MoxW1−xTe2 nanostructures. J. Mater. Chem. C. 5, 11317–11323 (2017).

    Google Scholar 

  31. 31.

    Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Google Scholar 

  32. 32.

    Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018).

    Google Scholar 

  33. 33.

    Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Google Scholar 

  34. 34.

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    Google Scholar 

  35. 35.

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). This paper presented the liquid-phase exfoliation of diverse 2D crystals into solution-processable ink materials.

    Google Scholar 

  36. 36.

    Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46, 14–22 (2012).

    Google Scholar 

  37. 37.

    Pan, K. et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 9, 5197 (2018).

    Google Scholar 

  38. 38.

    Worsley, R. et al. All-2D material inkjet-printed capacitors: toward fully printed integrated circuits. ACS Nano 13, 54–60 (2019).

    Google Scholar 

  39. 39.

    Backes, C. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10, 1589–1601 (2016).

    Google Scholar 

  40. 40.

    Zeng, Z. et al. Single‐layer semiconducting nanosheets: high‐yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011). This paper reported the early effort in lithium-intercalation exfoliation of MoS 2 nanosheets in solution and demonstration of electronic applications.

    Google Scholar 

  41. 41.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Google Scholar 

  42. 42.

    Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014).

    Google Scholar 

  43. 43.

    Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Google Scholar 

  44. 44.

    Fan, X. et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15, 5956–5960 (2015).

    Google Scholar 

  45. 45.

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Google Scholar 

  46. 46.

    Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    Google Scholar 

  47. 47.

    Fan, Z. et al. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21, 3730–3743 (2009).

    Google Scholar 

  48. 48.

    Kagan, C. R. & Andry, P. Thin-film Transistors (CRC Press, 2003).

  49. 49.

    Zhao, Y. et al. High‐electron‐mobility and air‐stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Google Scholar 

  50. 50.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Google Scholar 

  51. 51.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Google Scholar 

  52. 52.

    Yang, S. et al. A delamination strategy for thinly layered defect‐free high‐mobility black phosphorus flakes. Angew. Chem. Int. Ed. 130, 4767–4771 (2018).

    Google Scholar 

  53. 53.

    Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Google Scholar 

  54. 54.

    Yang, S. et al. Ultrafast delamination of graphite into high‐quality graphene using alternating currents. Angew. Chem. Int. Ed. 56, 6669–6675 (2017).

    Google Scholar 

  55. 55.

    Zhang, Z. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra‐high electrical conductivity. Adv. Mater. 29, 1702359 (2017).

    Google Scholar 

  56. 56.

    Ma, H. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018).

    Google Scholar 

  57. 57.

    Zhang, C. et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017).

    Google Scholar 

  58. 58.

    Zhu, J. et al. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 15, 7029–7036 (2015). This paper reported the assembly of low-leakage thin-film dielectrics from solution-processed 2D BN nanosheets.

    Google Scholar 

  59. 59.

    Osada, M. et al. High‐κ dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 18, 1023–1027 (2006).

    Google Scholar 

  60. 60.

    Matsuba, K. et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min. Sci. Adv. 3, e1700414 (2017).

    Google Scholar 

  61. 61.

    Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Google Scholar 

  62. 62.

    Cassagneau, T., Guérin, F. & Fendler, J. H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 16, 7318–7324 (2000).

    Google Scholar 

  63. 63.

    Sasaki, T. et al. Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13, 4661–4667 (2001).

    Google Scholar 

  64. 64.

    Li, L. et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J. Am. Chem. Soc. 129, 8000–8007 (2007).

    Google Scholar 

  65. 65.

    Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008).

    Google Scholar 

  66. 66.

    Taguchi, Y. et al. Fabrication of hybrid layered films of MoS2 and an amphiphilic ammonium cation using the Langmuir–Blodgett technique. Langmuir 14, 6550–6555 (1998).

    Google Scholar 

  67. 67.

    Yu, X., Prévot, M. S., Guijarro, N. & Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 6, 7596 (2015).

    Google Scholar 

  68. 68.

    Kaur, H. et al. Large area fabrication of semiconducting phosphorene by. Langmuir–Blodgett Assem. Sci. Rep. 6, 34095 (2016).

    Google Scholar 

  69. 69.

    Osada, M. et al. Robust high-κ response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225–5232 (2010).

    Google Scholar 

  70. 70.

    Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    Google Scholar 

  71. 71.

    Borini, S. et al. Ultrafast graphene oxide humidity sensors. ACS Nano 7, 11166–11173 (2013).

    Google Scholar 

  72. 72.

    Moon, I. K. et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3, 1112 (2013).

    Google Scholar 

  73. 73.

    Hantanasirisakul, K. et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016).

    Google Scholar 

  74. 74.

    Zhong, J. et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9, 3484 (2018).

    Google Scholar 

  75. 75.

    Min, K. et al. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. J. Colloid Interface Sci. 383, 36–42 (2012).

    Google Scholar 

  76. 76.

    Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    Google Scholar 

  77. 77.

    Casiraghi, C. et al. Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018).

    Google Scholar 

  78. 78.

    McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017). This paper demonstrated inkjet-printable 2D crystals for the construction of multilayer heterostructures and logic memory devices.

    Google Scholar 

  79. 79.

    Bariya, M. et al. Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12, 6978–6987 (2018).

    Google Scholar 

  80. 80.

    Kim, S. J., Choi, K., Lee, B., Kim, Y. & Hong, B. H. Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015).

    Google Scholar 

  81. 81.

    He, Q. et al. Fabrication of flexible MoS2 thin‐film transistor arrays for practical gas‐sensing applications. Small 8, 2994–2999 (2012).

    Google Scholar 

  82. 82.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Google Scholar 

  83. 83.

    Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Google Scholar 

  84. 84.

    González, R. I. et al. Bending energy of 2D materials: graphene, MoS2 and imogolite. RSC Adv. 8, 4577–4583 (2018).

    Google Scholar 

  85. 85.

    Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Google Scholar 

  86. 86.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Google Scholar 

  87. 87.

    Li, J. et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2, 754 (2012).

    Google Scholar 

  88. 88.

    Fix, W., Ullmann, A., Ficker, J. & Clemens, W. Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735–1737 (2002).

    Google Scholar 

  89. 89.

    Drury, C., Mutsaers, C., Hart, C., Matters, M. & De Leeuw, D. Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998).

    Google Scholar 

  90. 90.

    Tang, J. et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 1, 191–196 (2018).

    Google Scholar 

  91. 91.

    Shao, Y. et al. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639–3665 (2015).

    Google Scholar 

  92. 92.

    Paterson, A. F. & Anthopoulos, T. D. Enabling thin-film transistor technologies and the device metrics that matter. Nat. Commun. 9, 5264 (2018).

    Google Scholar 

Download references

Acknowledgements

X.D. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through award DE-SC0018828. Y.H. acknowledges financial support from National Science Foundation grant EFRI-1433541.

Author information

Affiliations

Authors

Contributions

All authors wrote and commented on the manuscript.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat Electron 2, 378–388 (2019). https://doi.org/10.1038/s41928-019-0301-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing