A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors

Article metrics

Abstract

A number of current approaches to quantum and neuromorphic computing use superconductors as the basis of their platform or as a measurement component, and will need to operate at cryogenic temperatures. Semiconductor systems are typically proposed as a top-level control in these architectures, with low-temperature passive components and intermediary superconducting electronics acting as the direct interface to the lowest-temperature stages. The architectures, therefore, require a low-power superconductor/semiconductor interface, which is not currently available. Here we report a superconducting switch that is capable of translating low-voltage superconducting inputs directly into semiconductor-compatible (above 1,000 mV) outputs at kelvin-scale temperatures (1 K or 4 K). To illustrate the capabilities in interfacing superconductors and semiconductors, we use it to drive a light-emitting diode in a photonic integrated circuit, generating photons at 1 K from a low-voltage input and detecting them with an on-chip superconducting single-photon detector. We also characterize our device’s timing response (less than 300 ps turn-on, 15 ns turn-off), output impedance (greater than 1 MΩ) and energy requirements (0.18 fJ m−2, 3.24 mV nW−1).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: High-impedance superconducting switch overview.
Fig. 2: Driving a PIC at 1 K.
Fig. 3: Driving an 8.7 kΩ load using the switch.
Fig. 4: Critical current and inferred temperature versus input power density.

Data availability

The data that support the findings of this study are available within the paper. Additional data are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74–79 (2018).

  2. 2.

    King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460 (2018).

  3. 3.

    Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120, 230502 (2018).

  4. 4.

    Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).

  5. 5.

    Slichter, D. H. et al. UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Opt. Express 25, 8705–8720 (2017).

  6. 6.

    Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).

  7. 7.

    McDermott, R. et al. Quantum–classical interface based on single flux quantum digital logic. Quant. Sci. Tech. 3, 024004 (2018).

  8. 8.

    Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53, 309–321 (2018).

  9. 9.

    Ortlepp, T., Whiteley, S. R., Zheng, L., Meng, X. & Van Duzer, T. High-speed hybrid superconductor-to-semiconductor interface circuit with ultra-low power consumption. IEEE Trans. Appl. Supercond. 23, 1400104 (2013).

  10. 10.

    Homulle, H. et al. A reconfigurable cryogenic platform for the classical control of quantum processors. Rev. Sci. Inst. 88, 045103 (2017).

  11. 11.

    Reilly, D. J. Engineering the quantum-classical interface of solid-state qubits. npj Quantum Inf. 1, 15011 (2015).

  12. 12.

    Benz, S. P. et al. One-volt Josephson arbitrary waveform synthesizer. IEEE Trans. Appl. Supercond. 25, 1300108 (2015).

  13. 13.

    McCaughan, A. N. & Berggren, K. K. A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14, 5748–5753 (2014).

  14. 14.

    Feng, Y. J. et al. Josephson-CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Trans. Appl. Supercond. 13, 467–470 (2003).

  15. 15.

    Van Duzer, T. & Kumar, S. Semiconductor-superconductor hybrid electronics. Cryogenics 30, 1014–1023 (1990).

  16. 16.

    Wei, D. et al. New Josephson-CMOS interface amplifier. IEEE Trans. Appl. Supercond. 21, 805–808 (2011).

  17. 17.

    Berggren, K. K. et al. A superconducting nanowire can be modeled by using SPICE. Super. Sci. Tech. 31, 055010 (2018).

  18. 18.

    Zhao, Q.-Y., McCaughan, A. N., Dane, A. E., Berggren, K. K. & Ortlepp, T. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics. Super. Sci. Tech. 30, 044002 (2017).

  19. 19.

    Lee, S.-B., Hutchinson, G. D., Williams, Da, Hasko, D. G. & Ahmed, H. Superconducting nanotransistor based digital logic gates. Nanotechnology 14, 188–191 (2003).

  20. 20.

    Zhao, Q.-Y. et al. A compact superconducting nanowire memory element operated by nanowire cryotrons. Super. Sci. Tech. 31, 035009 (2018).

  21. 21.

    Buckley, S. et al. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Appl. Phys. Lett. 111, 141101 (2017).

  22. 22.

    Clem, J. & Berggren, K. Geometry-dependent critical currents in superconducting nanocircuits. Phys. Rev. B 84, 1–27 (2011).

  23. 23.

    Allmaras, J. P. et al. Thin-film thermal conductivity measurements using superconducting nanowires. J. Low Temp. Phys. 193, 380–386 (2018).

  24. 24.

    Sidorova, M. V. et al. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films. Phys. Rev. B 97, 184512 (2018).

  25. 25.

    Marsili, F. et al. Hotspot relaxation dynamics in a current-carrying superconductor. Phys. Rev. B 93, 094518 (2016).

  26. 26.

    Shainline, J. M. et al. Circuit designs for superconducting optoelectronic loop neurons. J. Appl. Phys. 124, 152130 (2018).

  27. 27.

    McCaughan, A. N., Abebe, N. S., Zhao, Q.-Y. & Berggren, K. K. Using geometry to sense current. Nano Lett. 16, 7626–7631 (2016).

  28. 28.

    Kerman, A., Yang, J., Molnar, R., Dauler, E. & Berggren, K. Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B 79, 1–4 (2009).

  29. 29.

    Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

Download references

Acknowledgements

We thank F. Lecocq for helpful discussions and A. Lita for insight into the fabrication development. Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. J.P.A. was supported by a NASA Space Technology Research Fellowship. Support for this work was provided in part by the DARPA Defense Sciences Offices, through the DETECT programme.

Author information

A.N.M., V.B.V., S.M.B. and J.M.S. conceived and designed the experiments. A.N.M. performed the experiments. J.P.A. and A.G.K. analysed and modelled the thermal properties of the device. A.N.M. and V.B.V. fabricated the devices. A.N.M., A.N.T. and S.W.N. analysed the data.

Correspondence to A. N. McCaughan or J. M. Shainline.

Ethics declarations

Competing interests

The authors declare US patent US10236433B1 (Thermal impedance amplifier).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Thermal transport modelling—estimation of χabs, and details of crosstalk and lateral heat transport.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading