Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers


Nanoelectromechanical system (NEMS) sensors and actuators could be of use in the development of next-generation mobile, wearable and implantable devices. However, these NEMS devices require transducers that are ultra-small, sensitive and can be fabricated at low cost. Here, we show that suspended double-layer graphene ribbons with attached silicon proof masses can be used as combined spring–mass and piezoresistive transducers. The transducers, which are created using processes that are compatible with large-scale semiconductor manufacturing technologies, can yield NEMS accelerometers that occupy at least two orders of magnitude smaller die area than conventional state-of-the-art silicon accelerometers. With our devices, we also extract the Young’s modulus values of double-layer graphene and show that the graphene ribbons have significant built-in stresses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design and fabrication of graphene ribbons with suspended silicon proof masses.
Fig. 2: Electromechanical characterization of suspended graphene ribbons with attached proof masses.
Fig. 3: Static mechanical characterization of suspended graphene ribbons with attached proof masses.
Fig. 4: Dynamic mechanical characterization of suspended graphene ribbons with attached proof masses.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Code availability

A high-level description of the FEA model of the devices is available from the corresponding author on reasonable request.


  1. 1.

    Borgia, E. The internet of things vision: key features, applications and open issues. Comput. Commun. 54, 1–31 (2014).

    Article  Google Scholar 

  2. 2.

    del Rosario, M., Redmond, S. & Lovell, N. Tracking the evolution of smartphone sensing for monitoring human movement. Sensors 15, 18901–18933 (2015).

    Article  Google Scholar 

  3. 3.

    Brigante, C. M. N., Abbate, N., Basile, A., Faulisi, A. C. & Sessa, S. Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Ind. Electron. 58, 3234–3241 (2011).

    Article  Google Scholar 

  4. 4.

    Shasha Liu, P. & Tse, H.-F. Implantable sensors for heart failure monitoring. J. Arrhythm. 29, 314–319 (2013).

    Article  Google Scholar 

  5. 5.

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  Google Scholar 

  6. 6.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  Google Scholar 

  7. 7.

    Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    Article  Google Scholar 

  8. 8.

    Lau, C. N., Bao, W. & Velasco, J. Jr Properties of suspended graphene membranes. Mater. Today 15, 238–245 (2012).

    Article  Google Scholar 

  9. 9.

    Gómez-Navarro, C., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

    Article  Google Scholar 

  10. 10.

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  Google Scholar 

  11. 11.

    Chen, C. Y. & Hone, J. Graphene nanoelectromechanical systems. Proc. IEEE 101, 1766–1779 (2013).

    Article  Google Scholar 

  12. 12.

    Smith, A. D. et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013).

    Article  Google Scholar 

  13. 13.

    Kumar, M. & Bhaskaran, H. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems. Nano Lett. 15, 2562–2567 (2015).

    Article  Google Scholar 

  14. 14.

    López-Polín, G. et al. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11, 26–31 (2015).

    Article  Google Scholar 

  15. 15.

    López-Polín, G. et al. The influence of strain on the elastic constants of graphene. Carbon 124, 42–48 (2017).

    Article  Google Scholar 

  16. 16.

    Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525 (2019).

    Article  Google Scholar 

  17. 17.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  18. 18.

    Hurst, A. M., Lee, S., Cha, W. & Hone, J. A graphene accelerometer. In 2015 28th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS) 865–868 (IEEE, 2015).

  19. 19.

    Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  Google Scholar 

  20. 20.

    Matsui, K. et al. Mechanical properties of few layer graphene cantilever. In 2014 27th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS) 1087–1090 (IEEE, 2014).

  21. 21.

    Zhang, P. et al. Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014).

    Article  Google Scholar 

  22. 22.

    Shekhawat, A. & Ritchie, R. O. Toughness and strength of nanocrystalline graphene. Nat. Commun. 7, 10546 (2016).

    Article  Google Scholar 

  23. 23.

    Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  Google Scholar 

  24. 24.

    Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  Google Scholar 

  25. 25.

    Balandin, A. A. Low-frequency 1/f noise in graphene devices. Nat. Nanotechnol. 8, 549–555 (2013).

    Article  Google Scholar 

  26. 26.

    Lin, Y.-M. & Avouris, P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008).

    Article  Google Scholar 

  27. 27.

    Kavitha, S., Daniel, R. J. & Sumangala, K. A simple analytical design approach based on computer aided analysis of bulk micromachined piezoresistive MEMS accelerometer for concrete SHM applications. Measurement 46, 3372–3388 (2013).

    Article  Google Scholar 

  28. 28.

    Lynch, J. P. et al. Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring. J. Aerosp. Eng. 16, 108–114 (2003).

    Article  Google Scholar 

  29. 29.

    Shivaraman, S. et al. Free-standing epitaxial graphene. Nano Lett. 9, 3100–3105 (2009).

    Article  Google Scholar 

  30. 30.

    Frank, I. W., Tanenbaum, D. M., Zande, A. Mvander & McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 25, 2558–2561 (2007).

    Article  Google Scholar 

  31. 31.

    Senturia, S. D. Microsystem Design Ch.10 (Kluwer, 2002).

  32. 32.

    Castellanos-Gomez, A., Singh, V., van der Zant, H. S. J. & Steele, G. A. Mechanics of freely-suspended ultrathin layered materials: mechanics of 2D materials. Ann. Phys.-Berlin 527, 27–44 (2015).

    Article  Google Scholar 

  33. 33.

    Traversi, F. et al. Elastic properties of graphene suspended on a polymer substrate by e-beam exposure. New J. Phys. 12, 023034 (2010).

    Article  Google Scholar 

  34. 34.

    Li, P., You, Z., Haugstad, G. & Cui, T. Graphene fixed-end beam arrays based on mechanical exfoliation. Appl. Phys. Lett. 98, 253105 (2011).

    Article  Google Scholar 

  35. 35.

    Li, Y., Zheng, Q., Hu, Y. & Xu, Y. Micromachined piezoresistive accelerometers based on an asymmetrically gapped cantilever. J. Microelectromech. Syst. 20, 83–94 (2011).

    Article  Google Scholar 

  36. 36.

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  Google Scholar 

  37. 37.

    Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    Article  Google Scholar 

  38. 38.

    Yazdi, N., Ayazi, F. & Najafi, K. Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998).

    Article  Google Scholar 

  39. 39.

    Zhu, S.-E., Ghatkesar, M. K., Zhang, C. & Janssen, G. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102, 161904 (2013).

    Article  Google Scholar 

  40. 40.

    Benameur, M. M. et al. Electromechanical oscillations in bilayer graphene. Nat. Commun. 6, 8582 (2015).

    Article  Google Scholar 

  41. 41.

    Zheng, X., Chen, X., Kim, J.-K., Lee, D.-W. & Li, X. Measurement of the gauge factor of few-layer graphene. J. Micro/Nanolith. MEMS MOEMS 12, 013009–013009 (2013).

    Article  Google Scholar 

  42. 42.

    Huang, M., Pascal, T. A., Kim, H., Goddard, W. A. & Greer, J. R. Electronic-mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11, 1241–1246 (2011).

    Article  Google Scholar 

  43. 43.

    Nicholl, R. J. T. et al. The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat. Commun. 6, 8789 (2015).

    Article  Google Scholar 

  44. 44.

    Wung, T.-S., Ning, Y.-T., Chang, K.-H., Tang, S. & Tsai, Y.-X. Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity. Sens. Actuat. A 222, 284–292 (2015).

    Article  Google Scholar 

  45. 45.

    Fischer, A. C. et al. Integrating MEMS and ICs. Microsyst. Nanoeng. 1, 15005 (2015).

    Article  Google Scholar 

  46. 46.

    Roy, A. L. & Bhattacharyya, T. K. Design, fabrication and characterization of high performance SOI MEMS piezoresistive accelerometers. Microsyst. Technol. 21, 55–63 (2015).

    Article  Google Scholar 

  47. 47.

    Zhang, L., Lu, J., Kurashima, Y., Takagi, H. & Maeda, R. Development and application of planar piezoresistive vibration sensor. Microelectron. Eng. 119, 70–74 (2014).

    Article  Google Scholar 

  48. 48.

    Plaza, J. A., Collado, A., Cabruja, E. & Esteve, J. Piezoresistive accelerometers for MCM package. J. Microelectromech. Syst. 11, 794–801 (2002).

    Article  Google Scholar 

  49. 49.

    Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015).

    Article  Google Scholar 

  50. 50.

    Lee, G.-H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).

    Article  Google Scholar 

  51. 51.

    Salvetat, J.-P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944 (1999).

    Article  Google Scholar 

  52. 52.

    Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article  Google Scholar 

  53. 53.

    Han, J., Ryu, S., Kim, D.-K., Woo, W. & Sohn, D. Effect of interlayer sliding on the estimation of elastic modulus of multilayer graphene in nanoindentation simulation. EPL 114, 68001 (2016).

    Article  Google Scholar 

  54. 54.

    Wei, X. et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation. ACS Nano 10, 1820–1828 (2016).

    Article  Google Scholar 

  55. 55.

    Nicholl, R. J. T., Lavrik, N. V., Vlassiouk, I., Srijanto, B. R. & Bolotin, K. I. Hidden area and mechanical nonlinearities in freestanding graphene. Phys. Rev. Lett. 118, 266101 (2017).

    Article  Google Scholar 

  56. 56.

    Fan, X. et al. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 4, eaar5170 (2018).

    Article  Google Scholar 

  57. 57.

    Smith, A. D., Vaziri, S., Rodriguez, S., Östling, M. & Lemme, M. C. Large scale integration of graphene transistors for potential applications in the back end of the line. Solid State Electron. 108, 61–66 (2015).

    Article  Google Scholar 

  58. 58.

    Wagner, S. et al. Graphene transfer methods for the fabrication of membrane-based NEMS devices. Microelectron. Eng. 159, 108–113 (2016).

    Article  Google Scholar 

Download references


This work was supported by the European Research Council through the Starting Grant M&M’s (No. 277879) and InteGraDe (307311), the Swedish Research Council (GEMS, 2015-05112), the China Scholarship Council through a scholarship grant, the German Federal Ministry for Education and Research project NanoGraM (BMBF, 03XP0006C) and the German Research Foundation (DFG, LE 2440/1-2). Funding through the European Commission (Graphene Flagship, 785219) is acknowledged. The authors thank C. Aronsson for help with device processing, M. Bergqvist for support with the measurement set-up, M. Fielden for help with AFM indentation experiments and J. Schell for help with LDV experiments. The authors also thank C. Rusu, D. Kolev and P. Johannisson for discussions about LDV characterization.

Author information




X.F., F.N., F.F., A.C.F., A.D.S. and M.C.L. conceived and designed the experiments. A.D.S., S.W., M.Ö. and M.C.L. developed the graphene transfer method. S.S. performed packaging of all devices. F.F. designed the measurement circuits and contributed to acceleration measurements. S.W. carried out the Raman characterization. X.F. fabricated the devices (substrate preparation, graphene transfer and patterning, and proof mass release) and performed the experiments, including device characterization (optical microscopy, SEM imaging, white-light interferometry, AFM tip indentation, LDV measurements and electrical characterization) and acceleration measurements, and wrote the manuscript. F.N. provided guidance in the experiments and manuscript writing. X.F., F.F., H.R., F.N. and M.C.L. analysed the experimental results. X.F., H.R. and F.N. analysed the simulation results. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xuge Fan or Max C. Lemme or Frank Niklaus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–26.

Supplementary Video 1

FEA simulation results depicting the dominant Z-mode movement of the proof mass of device 1 with resonance frequency of 50.15 kHz.

Supplementary Video 2

LDV measurements showing the resonant Z-mode movement of the proof mass of device 14 with resonance frequency of 24.2 kHz.

Supplementary Video 3

LDV measurement showing the deflection of the proof mass of device 14 at an applied 1 g acceleration and an excitation frequency of 21.688 kHz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Forsberg, F., Smith, A.D. et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat Electron 2, 394–404 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing