Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A CMOS-integrated quantum sensor based on nitrogen–vacancy centres


The nitrogen–vacancy (NV) centre in diamond can be used as a solid-state quantum sensor with applications in magnetometry, electrometry, thermometry and chemical sensing. However, to deliver practical applications, existing NV-based sensing techniques, which are based on bulky and discrete instruments for spin control and detection, must be replaced by more compact designs. Here we show that NV-based quantum sensing can be integrated with complementary metal–oxide–semiconductor (CMOS) technology to create a compact and scalable platform. Using standard CMOS technology, we integrate the essential components for NV control and measurement—microwave generator, optical filter and photodetector—in a 200 μm × 200 μm footprint. With this platform we demonstrate quantum magnetometry with a sensitivity of 32.1 μT Hz−1/2 and simultaneous thermometry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CMOS-integrated quantum sensing architecture.
Fig. 2: NV energy level diagram and ODMR spectra.
Fig. 3: On-chip CMOS microwave generation and inductor characteristics.
Fig. 4: On-chip detection of NV spin-dependent fluorescence.
Fig. 5: On-chip detection of ODMR and NV-based quantum magnetometry.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  Google Scholar 

  2. 2.

    Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    Article  Google Scholar 

  3. 3.

    Plakhotnik, T., Doherty, M. W., Cole, J. H., Chapman, R. & Manson, N. B. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV center in nanodiamond. Nano Lett. 14, 4989–4996 (2014).

    Article  Google Scholar 

  4. 4.

    Laraoui, A. et al. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe. Nat. Commun. 6, 8954 (2015).

    Article  Google Scholar 

  5. 5.

    Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    Article  Google Scholar 

  6. 6.

    Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    Article  Google Scholar 

  7. 7.

    Trusheim, M. E. & Englund, D. Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond. New J. Phys. 18, 123023 (2016).

    Article  Google Scholar 

  8. 8.

    Dolde, F. et al. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).

    Article  Google Scholar 

  9. 9.

    Chen, E. H. et al. High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond. Phys. Rev. A 95, 053417 (2017).

    Article  Google Scholar 

  10. 10.

    Broadway, D. A. et al. Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 1, 502–507 (2018).

    Article  Google Scholar 

  11. 11.

    Maze, J. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  Google Scholar 

  12. 12.

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  Google Scholar 

  13. 13.

    Grinolds, M. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article  Google Scholar 

  14. 14.

    Jensen, K. et al. Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014).

    Article  Google Scholar 

  15. 15.

    Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  16. 16.

    Glenn, D. R. et al. Single-cell magnetic imaging using a quantum diamond microscope. Nat. Methods 12, 736–738 (2015).

    Article  Google Scholar 

  17. 17.

    Boss, J. M., Cujia, K., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    Article  Google Scholar 

  18. 18.

    Mamin, H. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  Google Scholar 

  19. 19.

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  Google Scholar 

  20. 20.

    Häberle, T., Schmid-Lorch, D., Reinhard, F. & Wrachtrup, J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015).

    Article  Google Scholar 

  21. 21.

    Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).

    Article  Google Scholar 

  22. 22.

    Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    Article  Google Scholar 

  23. 23.

    Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    MathSciNet  Article  Google Scholar 

  24. 24.

    Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    MathSciNet  Article  Google Scholar 

  25. 25.

    Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    Article  Google Scholar 

  26. 26.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  Google Scholar 

  27. 27.

    Clevenson, H. et al. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 11, 393–397 (2015).

    Article  Google Scholar 

  28. 28.

    Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article  Google Scholar 

  29. 29.

    Ibrahim, M. I., Foy, C., Kim, D., Englund, D. R. & Han, R. Room-temperature quantum sensing in CMOS: on-chip detection of electronic spin states in diamond color centers for magnetometry. In Proceedings of IEEE VLSI Circuits Symposium 249–250 (IEEE, 2018).

  30. 30.

    Acosta, V. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    Article  Google Scholar 

  31. 31.

    Maertz, B., Wijnheijmer, A., Fuchs, G., Nowakowski, M. & Awschalom, D. Vector magnetic field microscopy using nitrogen vacancy centers in diamond. Appl. Phys. Lett. 96, 092504 (2010).

    Article  Google Scholar 

  32. 32.

    Wang, P. et al. High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nat. Commun. 6, 6631 (2015).

    Article  Google Scholar 

  33. 33.

    Clevenson, H. et al. Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 112, 252406 (2018).

    Article  Google Scholar 

  34. 34.

    Schloss, J. M., Barry, J. F., Turner, M. J. & Walsworth, R. L. Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl. 10, 034044 (2018).

    Article  Google Scholar 

  35. 35.

    Razavi, B. RF Microelectronics (Prentice Hall, 1998).

  36. 36.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    MathSciNet  Article  Google Scholar 

  37. 37.

    Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    Article  Google Scholar 

  38. 38.

    Hong, L., Li, H., Yang, H. & Sengupta, K. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE J. Solid-State Circuits 52, 2388–2406 (2017).

    Article  Google Scholar 

  39. 39.

    Murari, K., Etienne-Cummings, R., Thakor, N. & Cauwenberghs, G. Which photodiode to use: a comparison of CMOS-compatible structures. IEEE Sens. J. 9, 752–760 (2009).

    Article  Google Scholar 

  40. 40.

    Yue, C. P. & Wong, S. S. On-chip spiral inductors with patterned ground shields for Si-based RF ICs. IEEE J. Solid-State Circuits 33, 743–752 (1998).

    Article  Google Scholar 

  41. 41.

    Chatzidrosos, G. et al. Miniature cavity-enhanced diamond magnetometer. Phys. Rev. Appl. 8, 044019 (2017).

    Article  Google Scholar 

  42. 42.

    Wen, J., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon. 5, 83–130 (2013).

    Article  Google Scholar 

  43. 43.

    Peng, S. & Morris, G. M. Resonant scattering from two-dimensional gratings. J. Opt. Soc. Am. A 13, 993–1005 (1996).

    Article  Google Scholar 

  44. 44.

    Acosta, V. et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009).

    Article  Google Scholar 

  45. 45.

    Oeckinghaus, T. et al. A compact, diode laser based excitation system for microscopy of NV centers. Rev. Sci. Instrum. 85, 073101 (2014).

    Article  Google Scholar 

  46. 46.

    Kasahara, D. et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl. Phys. Express 4, 072103 (2011).

    Article  Google Scholar 

  47. 47.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  Google Scholar 

  48. 48.

    Wang, C. et al. An on-chip fully-electronic molecular clock based on sub-THz rotational spectroscopy. Nat. Electron. 1, 421–427 (2018).

    Article  Google Scholar 

  49. 49.

    Charbon, E. et al. 15.5 cryo-CMOS circuits and systems for scalable quantum computing. In Proceedings of IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2017).

  50. 50.

    Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun. 3, 800 (2012).

    Article  Google Scholar 

  51. 51.

    Veldhorst, M., Eenink, H., Yang, C. & Dzurak, A. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    Article  Google Scholar 

  52. 52.

    Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53, 309–321 (2018).

    Article  Google Scholar 

  53. 53.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article  Google Scholar 

  54. 54.

    Unden, T. et al. Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett. 116, 230502 (2016).

    Article  Google Scholar 

  55. 55.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  Google Scholar 

  56. 56.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    MathSciNet  Article  Google Scholar 

  57. 57.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  Google Scholar 

Download references


This research is supported in part by the Army Research Office Multidisciplinary University Research Initiative (ARO MURI) biological transduction programme. D.K. acknowledges financial support from the Kwanjeong Educational Foundation. M.I.I. acknowledges support from the Singaporean-MIT Research Alliance (SMART) and the MIT Center of Integrated Circuits and Systems. C.F. acknowledges support from Master Dynamic Limited and from the National Science Foundation (NSF) Research Advanced by Interdisciplinary Science and Engineering (RAISE) Transformational Advances in Quantum Systems (TAQS). M.E.T. acknowledges support by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at MIT, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence.

Author information




D.R.E. and R.H. initially conceived the diamond–CMOS integration. M.I.I. conceived the idea of stacking the microwave inductor, plasmonic filter and photodiode in a 3D architecture. M.I.I., C.F. and D.K. contributed to chip specifications, design and the experiment. M.I.I. constructed the CMOS chip prototype. D.K. performed FDTD simulations for the optical filter design and the diamond transfer on the CMOS chip. C.F. prepared the control software for the experiment. C.F. and D.K. constructed the optical set-up and etched the CMOS passivation layers. All authors contributed to discussion of the experimental results and writing of the manuscript.

Corresponding authors

Correspondence to Ruonan Han or Dirk R. Englund.

Ethics declarations

Competing interests

The chip-scale spin control and detection scheme in this work has been filed in a United States provisional patent application (62/623151).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Ibrahim, M.I., Foy, C. et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nat Electron 2, 284–289 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing