Two-dimensional spintronics for low-power electronics

Abstract

The scaling of complementary metal–oxide–semiconductor (CMOS) technology is increasingly challenging, but demand for low-power data storage and processing continues to grow. The ability to generate, transport and manipulate spin signals in two-dimensional (2D) materials suggests that they could provide a suitable platform to build beyond-CMOS spintronic devices. Here we review the development of 2D spintronics and explore its potential to deliver devices and circuits for low-power electronic applications. We examine the elementary spintronic functionalities and how they can be used to build electronic devices and circuits. We also consider the challenges that must be addressed to deliver practical memory and logic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of 2D spintronics for low-power electronics.
Fig. 2: Elementary functionality of 2D spintronics.
Fig. 3: Devices and circuits using 2D spintronics.
Fig. 4: Innovative memory devices using 2D spintronics.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    International Roadmap for Devices and Systems: Beyond CMOS (IEEE, 2017).

  2. 2.

    Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Google Scholar 

  3. 3.

    Nikonov, D. E. & Young, I. A. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Google Scholar 

  4. 4.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Google Scholar 

  5. 5.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Google Scholar 

  6. 6.

    Kim, J. et al. Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor. Proc. IEEE 103, 106–130 (2015).

    Google Scholar 

  7. 7.

    Zhao, W. & Prenat, G. Spintronics-based Computing (Springer, 2015).

  8. 8.

    Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 10, 187–191 (2015).

    Google Scholar 

  9. 9.

    Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Google Scholar 

  10. 10.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Google Scholar 

  11. 11.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Google Scholar 

  12. 12.

    Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Google Scholar 

  13. 13.

    Yuasa, S. et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Google Scholar 

  14. 14.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Google Scholar 

  15. 15.

    Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012).

    Google Scholar 

  16. 16.

    Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Google Scholar 

  17. 17.

    Tombros, N. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Google Scholar 

  18. 18.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). This paper reported the experimental demonstration of giant TMR in 2D MTJ.

    Google Scholar 

  19. 19.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). This paper reported the experimental demonstration of giant TMR in 2D MTJ.

    Google Scholar 

  20. 20.

    Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quantum Mater. 3, 27 (2018).

    Google Scholar 

  21. 21.

    Otani, Y. et al. Spin conversion on the nanoscale. Nat. Phys. 13, 829–832 (2017).

    Google Scholar 

  22. 22.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    Google Scholar 

  23. 23.

    Lin, X. et al. Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8, 034006 (2017).

    Google Scholar 

  24. 24.

    Roche, S. et al. Graphene spintronics: the European flagship perspective. 2D Mater. 2, 030202 (2015).

    Google Scholar 

  25. 25.

    Aronov, A. G., Lyanda-Geller, Y. B. & Pikus, G. E. Spin polarization of electrons by an electric current. Sov. Phys. JETP 73, 537–541 (1991).

    Google Scholar 

  26. 26.

    Ivchenko, E. L., Lyanda-Geller, Y. B. & Pikus, G. E. Photocurrent in structures with quantum wells with an optical orientation of free carriers. JETP Lett. 50, 175–177 (1989).

    Google Scholar 

  27. 27.

    Aronov, A. G. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field. JETP Lett. 50, 431–434 (1989).

    Google Scholar 

  28. 28.

    Žutić, I. et al. Proximitized materials. Mater. Today 22, 85–107 (2019). This paper reviews the progress of proximity effects and proximitized materials.

    Google Scholar 

  29. 29.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Google Scholar 

  30. 30.

    Varignon, J., Vila, L., Barthélémy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018).

    Google Scholar 

  31. 31.

    Shao, Q. et al. Strong Rashba–Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).

    Google Scholar 

  32. 32.

    Hill, E. W. et al. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Google Scholar 

  33. 33.

    Fert, A. & Jaffres, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Google Scholar 

  34. 34.

    Schmidt, G. et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Google Scholar 

  35. 35.

    Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Google Scholar 

  36. 36.

    Vaklinova, K., Hoyer, A., Burghard, M. & Kern, K. Current-induced spin polarization in topological insulator–graphene heterostructures. Nano Lett. 16, 2595–2602 (2016).

    Google Scholar 

  37. 37.

    Luo, Y. K. et al. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17, 3877–3883 (2017).

    Google Scholar 

  38. 38.

    Karpan, V. et al. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99, 176602 (2007).

    Google Scholar 

  39. 39.

    Friedman, A. L. et al. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 5, 3161 (2014).

    Google Scholar 

  40. 40.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Google Scholar 

  41. 41.

    Gurram, M., Omar, S. & Wees, B. J. V. Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat. Commun. 8, 248 (2017).

    Google Scholar 

  42. 42.

    Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16, 3533–3539 (2016).

    Google Scholar 

  43. 43.

    Ingla-Aynés, J., Meijerink, R. J. & Wees, B. J. V. Eighty-eight percent directional guiding of spin currents with 90 μm relaxation length in bilayer graphene using carrier drift. Nano Lett. 16, 4825–4830 (2016).

    Google Scholar 

  44. 44.

    Tsai, W. et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013).

    Google Scholar 

  45. 45.

    Leutenantsmeyer, J. C., Ingla-Aynés, J., Fabian, J. & Wees, B. J. V. Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene. Phys. Rev. Lett. 121, 127702 (2018).

    Google Scholar 

  46. 46.

    Xu, J. et al. Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene. Phys. Rev. Lett. 121, 127703 (2018).

    Google Scholar 

  47. 47.

    J O Zsa, C. et al. Electronic spin drift in graphene field-effect transistors. Phys. Rev. Lett. 100, 236603 (2008).

    Google Scholar 

  48. 48.

    Lv, Y. et al. Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    Google Scholar 

  49. 49.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    Google Scholar 

  50. 50.

    Shao, Q. et al. Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films. Nat. Commun. 9, 3612 (2018).

    Google Scholar 

  51. 51.

    Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016).

    Google Scholar 

  52. 52.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Google Scholar 

  53. 53.

    Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303–308 (2018).

    Google Scholar 

  54. 54.

    Xu, J. et al. Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts. Nat. Commun. 9, 2869 (2018).

    Google Scholar 

  55. 55.

    Cummings, A. W., García, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

    Google Scholar 

  56. 56.

    Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures. Nano Lett. 17, 7528–7532 (2017).

    Google Scholar 

  57. 57.

    Scharf, B., Xu, G., Matos-Abiague, A. & Žutić, I. Magnetic proximity effects in transition-metal dichalcogenides: converting excitons. Phys. Rev. Lett. 119, 127403 (2017).

    Google Scholar 

  58. 58.

    Zhao, C. et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 12, 757–762 (2017).

    Google Scholar 

  59. 59.

    Idzuchi, H., Fert, A. & Otani, Y. Revisiting the measurement of the spin relaxation time in graphene-based spintronic devices. Phys. Rev. B 91, 241407 (2015).

    Google Scholar 

  60. 60.

    Pickett, W. E. & Moodera, J. S. Half metallic magnets. Phys. Today 54, 39–45 (2001).

    Google Scholar 

  61. 61.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Google Scholar 

  62. 62.

    Zhu, Y., Kong, X., Rhone, T. D. & Guo, H. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater. 2, 081001 (2018).

    Google Scholar 

  63. 63.

    Zhou, J. et al. Silicene spintronics: Fe(111)/silicene system for efficient spin injection. Appl. Phys. Lett. 111, 182408 (2017).

    Google Scholar 

  64. 64.

    Avsar, A. et al. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13, 888–893 (2017).

    Google Scholar 

  65. 65.

    DC, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1-x) films. Nat. Mater. 17, 800–807 (2018).

    Google Scholar 

  66. 66.

    Liang, S. et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 8, 14947 (2017).

    Google Scholar 

  67. 67.

    Han, W. & Kawakami, R. K. Spin relaxation in single-layer and bilayer graphene. Phys. Rev. Lett. 107, 047207 (2011).

    Google Scholar 

  68. 68.

    Avsar, A. et al. Electronic spin transport in dual-gated bilayer graphene. NPG Asia Mater. 8, e274 (2016).

    Google Scholar 

  69. 69.

    Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    Google Scholar 

  70. 70.

    Tuan, D. V. et al. Pseudospin-driven spin relaxation mechanism in graphene. Nat. Phys. 10, 857–863 (2014).

    Google Scholar 

  71. 71.

    Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016). This paper presented an experimental demonstration of a 2D spin logic device.

    Google Scholar 

  72. 72.

    Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    Google Scholar 

  73. 73.

    Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017).

    Google Scholar 

  74. 74.

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Google Scholar 

  75. 75.

    Wang, Z. et al. High-density NAND-like spin transfer torque memory with spin orbit torque erase operation. IEEE Electron Device Lett. 39, 343–346 (2018).

    Google Scholar 

  76. 76.

    Wen, H. et al. Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature. Phys. Rev. Appl. 5, 044003 (2016). This paper presented an experimental demonstration of a 2D spin logic device.

    Google Scholar 

  77. 77.

    Yang, H. et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt–graphene heterostructures. Nano Lett. 16, 145–151 (2015).

    Google Scholar 

  78. 78.

    Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018). This paper presented an experimental demonstration of field-free switching of perpendicular magnetization via the interplay of spin–orbit and spin-transfer torques.

    Google Scholar 

  79. 79.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Google Scholar 

  80. 80.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Google Scholar 

  81. 81.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Google Scholar 

  82. 82.

    Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Google Scholar 

  83. 83.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Material targets for scaling all-spin logic. Phys. Rev. Appl. 5, 014002 (2016).

    Google Scholar 

  84. 84.

    Ingla-Aynés, J. et al. 24-μm spin relaxation length in boron nitride encapsulated bilayer graphene. Phys. Rev. B 92, 201410(R) (2015).

    Google Scholar 

  85. 85.

    Drögeler, M. et al. Nanosecond spin lifetimes in single- and few-layer graphene–hBN heterostructures at room temperature. Nano Lett. 14, 6050–6055 (2014).

    Google Scholar 

  86. 86.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    Google Scholar 

  87. 87.

    Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    MATH  Google Scholar 

  88. 88.

    Dery, H., Cywiński, Ł. & Sham, L. J. Spin transference and magnetoresistance amplification in a transistor. Phys. Rev. B 73, 16130 (2006).

    Google Scholar 

  89. 89.

    Dery, H. et al. Nanospintronics based on magnetologic gates. IEEE Trans. Electron Devices 59, 259–262 (2012).

    Google Scholar 

  90. 90.

    Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    Google Scholar 

  91. 91.

    Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Preprint at https://arxiv.org/abs/1902.05794 (2019). This paper reported the spin–orbit torque switching of 2D ferromagnet Fe 3 GeTe 2.

  92. 92.

    Kimel, A. V. & Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189–200 (2019).

    Google Scholar 

  93. 93.

    Lindemann, M. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019).

    Google Scholar 

  94. 94.

    Zhou, J. et al. Large tunneling magnetoresistance in VSe2/MoS2 magnetic tunnel junction. ACS Appl. Mater. Inter. 11, 17647–17653 (2019).

    Google Scholar 

  95. 95.

    Du, J. et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale 9, 17585–17592 (2017).

    Google Scholar 

  96. 96.

    O Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Google Scholar 

  97. 97.

    Kan, M., Adhikari, S. & Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16, 4990 (2014).

    Google Scholar 

  98. 98.

    Guo, Y. et al. Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 10, 18036–18042 (2018).

    Google Scholar 

  99. 99.

    Zhang, W., Qu, Q., Zhu, P. & Lam, C. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).

    Google Scholar 

  100. 100.

    He, J., Li, X., Lyu, P. & Nachtigall, P. Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. Nanoscale 9, 2246–2252 (2017).

    Google Scholar 

  101. 101.

    Zhuang, H. L., Xie, Y., Kent, P. R. C. & Ganesh, P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B 92, 035407 (2015).

    Google Scholar 

  102. 102.

    May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Google Scholar 

  103. 103.

    Si, C., Zhou, J. & Sun, Z. Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Inter. 7, 17510–17515 (2015).

    Google Scholar 

  104. 104.

    Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Google Scholar 

  105. 105.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Google Scholar 

  106. 106.

    Pai, C. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Google Scholar 

  107. 107.

    Wu, D. et al. Spin–orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer. Appl. Phys. Lett. 109, 222401 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51602013, 61571023 and 61627813), the International Collaboration 111 Project (no. B16001), the International Collaboration Project from the Ministry of Science and Technology in China (no. 2015DFE12880), Young Elite Scientists Sponsorship Program by CAST (no. 2018QNRC001), the Beijing Natural Science Foundation (no. 4162039), the Fundamental Research Funds for the Central Universities of China, and the Beijing Advanced Innovation Centre for Big Data and Brain Computing.

Author information

Affiliations

Authors

Contributions

X.Y.L. and W.S.Z. conceived the project. All of the authors wrote the paper and participated in discussions.

Corresponding author

Correspondence to Weisheng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Yang, W., Wang, K.L. et al. Two-dimensional spintronics for low-power electronics. Nat Electron 2, 274–283 (2019). https://doi.org/10.1038/s41928-019-0273-7

Download citation

Further reading