Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunnelling-based ternary metal–oxide–semiconductor technology


The power density limits of complementary metal–oxide–semiconductor (CMOS) technology could be overcome by moving from a binary to a ternary logic system. However, ternary devices are typically based on multi-threshold voltage schemes, which make the development of power-scalable and mass-producible ternary device platforms challenging. Here we report a wafer-scale and energy-efficient ternary CMOS technology. Our approach is based on a single threshold voltage and relies on a third voltage state created using an off-state constant current that originates from quantum-mechanical band-to-band tunnelling. This constant current can be scaled down to a sub-picoampere level under a low applied voltage of 0.5 V. Analysis of a ternary CMOS inverter illustrates the variation tolerance of the third intermediate output voltage state, and its symmetric in–out voltage-transfer characteristics allow integrated circuits with ternary logic and memory latch-cell functions to be demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ternary CMOS.
Fig. 2: T-CMOS device characteristics.
Fig. 3: T-CMOS inverter characteristics.
Fig. 4: T-CMOS integrated circuit demonstration.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  2. 2.

    Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000).

    Article  Google Scholar 

  3. 3.

    Smith, K. C. The prospects for multivalued logic: a technology and applications view. IEEE Trans. Comput. C-30, 619–634 (1981).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hurst, S. L. Multiple-valued logic—its status and its future. IEEE Trans. Comput. C-33, 1160–1179 (1984).

    Article  Google Scholar 

  5. 5.

    Esser, S. K. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl Acad. Sci. USA 113, 11441–11446 (2016).

    Article  Google Scholar 

  6. 6.

    Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003).

    Article  Google Scholar 

  7. 7.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–672 (2014).

    Article  Google Scholar 

  8. 8.

    Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article  Google Scholar 

  9. 9.

    Mouftah, H. T. & Jordan, I. B. Design of ternary COS/MOS memory and sequential circuits. IEEE Trans. Comput. C-26, 281–288 (1977).

    Article  Google Scholar 

  10. 10.

    Heung, A. & Mouftah, H. T. Depletion/enhancement CMOS for a lower power family of three-valued logic circuits. IEEE J. Solid-State Circuits 20, 609–616 (1985).

    Article  Google Scholar 

  11. 11.

    Raychowdhury, A. & Roy, K. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4, 168–179 (2005).

    Article  Google Scholar 

  12. 12.

    Karmakar, S. Ternary logic gates using quantum dot gate FETs (QDGFETs). Silicon 6, 169–178 (2014).

    Article  Google Scholar 

  13. 13.

    Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016).

    Article  Google Scholar 

  14. 14.

    Kim, Y. J. et al. Demonstration of complementary ternary graphene field-effect transistors. Sci. Rep. 6, 39353 (2016).

    Article  Google Scholar 

  15. 15.

    Heo, S. et al. Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron Device Lett. 39, 1948–1951 (2018).

    Article  Google Scholar 

  16. 16.

    Kane, E. O. Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960).

    Article  Google Scholar 

  17. 17.

    Taur, Y. & Ning, T. H. in Fundamentals of Modern VLSI Devices 2nd edn 125–126 (Cambridge Univ. Press, 2009).

  18. 18.

    Kim, K. R. et al. Silicon-based field-induced band-to-band tunneling effect transistor. IEEE Electron Device Lett. 25, 439–441 (2004).

    Article  Google Scholar 

  19. 19.

    Ionescu, A. M. & Riel, Heike Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    Article  Google Scholar 

  20. 20.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  Google Scholar 

  21. 21.

    Shin, S., Jang, E., Jeong, J. W., Park, B.-G. & Kim, K. R. Compact design of low power standard ternary inverter based on OFF-state current mechanism using nano-CMOS technology. IEEE Trans. Electron Devices 62, 2396–2403 (2015).

    Article  Google Scholar 

  22. 22.

    Shin, S., Jang, E., Jeong, J. W. & Kim, K. R. In 2017 IEEE Int. Symp. Multi-Valued Logic (ISMVL) 284–289 (IEEE, 2017);

  23. 23.

    Taur, Y., Wann, C. H. & Frank, D. J. In 1998 IEEE Int. Electron Devices Meet. 789–792 (IEEE, 1998);

  24. 24.

    Borse, D. G. et al. Optimization and realization of sub-100-nm channel length single halo p-MOSFETs. IEEE Trans. Electron Devices 49, 1077–1079 (2002).

    Article  Google Scholar 

  25. 25.

    Fujita, K. et al. In 2011 IEEE Int. Electron Devices Meet. 749–752 (IEEE, 2011);

  26. 26.

    Zhang, X. et al. Comparison of SOI versus bulk FinFET technologies for 6T-SRAM voltage scaling at the 7-/8-nm node. IEEE Trans. Electron Devices 64, 329–332 (2017).

    Article  Google Scholar 

  27. 27.

    Yoshitomi, T. et al. In 1993 Symp. VLSI Tech. 99–100 (IEEE, 1993);

  28. 28.

    Toyoshima, Y., Eguchi, T., Hayashida, H. & Hashimoto, K. In 1991 Symp. VLSI Tech. 111–112 (IEEE, 1991);

  29. 29.

    Pfiester, J. R. et al. An ultra-shallow buried-channel PMOST using boron penetration. IEEE Trans. Electron Devices 40, 207–213 (1993).

    Article  Google Scholar 

  30. 30.

    Esseni, D. & Pala, M. G. Interface traps in InAs nanowire tunnel FETs and MOSFETs – part II: comparative analysis and trap induced variability. IEEE Trans. Electron Devices 60, 2802–2807 (2013).

    Article  Google Scholar 

  31. 31.

    Park, B.-G., Hwang, S. W. & Park, Y. J. in Nanoelectronic Devices 222–223 (Pan Stanford Publishing, 2012).

  32. 32.

    Asenov, A. et al. Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm MOSFET’s with epitaxial and δ-doped channels. IEEE Trans. Electron Devices 46, 1718–1724 (1999).

    Article  Google Scholar 

  33. 33.

    Taur, Y. et al. CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997).

    Article  Google Scholar 

  34. 34.

    Bol, D., Ambroise, R., Flandre, D. & Legat, J. Interests and limitations of technology scaling for subthreshold logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17, 1508–1519 (2009).

    Article  Google Scholar 

  35. 35.

    Lewis, S. H., Fetterman, H. S., Gross, G. F., Ramachandran, R. & Viswanathan, T. R. A 10-b 20-Msample/s analog-to-digital converter. IEEE J. Solid-State Circuits 27, 351–358 (1992).

    Article  Google Scholar 

  36. 36.

    Akopyan, F. et al. True north: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

    Article  Google Scholar 

Download references


This work was supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under project number SRFC-TA1703-07 and by the U-K Brand Research Fund (1.180037.01) of UNIST (Ulsan National Institute of Science & Technology). The authors are grateful to foundry support for 130-nm and 90-nm CMOS technology processes.

Author information




K.R.K. conceived, planned and supervised the project. J.W.J. designed the layouts and foundry experiments, performed the device and circuit measurements and contributed to writing the initial draft of the manuscript. Y.-E.C. and W.-S.K. contributed to the measurements and simulations for experimental design. J.-H.P. and S.K. contributed to the circuit layout design. S.S. contributed to the initial design of the first foundry experiments and layouts. J.C. contributed to the device design, modelling and simulations. K.L. and S.-J.K. contributed to the circuit design and measurements. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Kyung Rok Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, J.W., Choi, YE., Kim, WS. et al. Tunnelling-based ternary metal–oxide–semiconductor technology. Nat Electron 2, 307–312 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing