Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations

Abstract

Memristors and memristor crossbar arrays have been widely studied for neuromorphic and other in-memory computing applications. To achieve optimal system performance, however, it is essential to integrate memristor crossbars with peripheral and control circuitry. Here, we report a fully functional, hybrid memristor chip in which a passive crossbar array is directly integrated with custom-designed circuits, including a full set of mixed-signal interface blocks and a digital processor for reprogrammable computing. The memristor crossbar array enables online learning and forward and backward vector-matrix operations, while the integrated interface and control circuitry allow mapping of different algorithms on chip. The system supports charge-domain operation to overcome the nonlinear IV characteristics of memristor devices through pulse width modulation and custom analogue-to-digital converters. The integrated chip offers all the functions required for operational neuromorphic computing hardware. Accordingly, we demonstrate a perceptron network, sparse coding algorithm and principal component analysis with an integrated classification layer using the system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fully integrated memristor/CMOS chip.
Fig. 2: Experimental demonstration of the single-layer perceptron on the integrated memristor chip.
Fig. 3: Experimental demonstration of sparse coding using the integrated memristor chip.
Fig. 4: Experimental demonstration of PCA using the integrated chip.
Fig. 5: Classification results in the bilayer network.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  2. 2.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  3. 3.

    Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  Google Scholar 

  4. 4.

    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011).

    Article  Google Scholar 

  5. 5.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  6. 6.

    Krestinskaya, O., James, A. P. & Chua, L. O. Neuro-memristive circuits for edge computing: a review. Preprint at https://arxiv.org/abs/1807.00962 (2018)

  7. 7.

    Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article  Google Scholar 

  8. 8.

    Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  9. 9.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  10. 10.

    Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

    Article  Google Scholar 

  11. 11.

    Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

    Article  Google Scholar 

  12. 12.

    Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

    Article  Google Scholar 

  13. 13.

    Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

    Article  Google Scholar 

  14. 14.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2017).

    Article  Google Scholar 

  15. 15.

    Gao, L., Chen, P.-Y. & Yu, S. Demonstration of convolution kernel operation on resistive cross-point array. IEEE Electron Device Lett. 37, 870–873 (2016).

    Article  Google Scholar 

  16. 16.

    Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789 (2017).

    Article  Google Scholar 

  17. 17.

    Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  Google Scholar 

  18. 18.

    Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17, 3113–3118 (2017).

    Article  Google Scholar 

  19. 19.

    Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).

    Article  Google Scholar 

  20. 20.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  21. 21.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    Article  Google Scholar 

  22. 22.

    Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    Article  Google Scholar 

  23. 23.

    Gao, B. et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 8, 6998–7004 (2014).

    Article  Google Scholar 

  24. 24.

    Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

    Article  Google Scholar 

  25. 25.

    Hu, M. et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Article  Google Scholar 

  26. 26.

    Xia, Q. et al. Memristor–CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009).

    Article  Google Scholar 

  27. 27.

    Kim, K.-H. et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012).

    Article  Google Scholar 

  28. 28.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  Google Scholar 

  29. 29.

    Chen, B. et al. Efficient in-memory computing architecture based on crossbar arrays. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM) 17.5.1–17.5.4 (IEEE, 2015).

  30. 30.

    Pershin, Y. V. & Di Ventra, M. Neuromorphic, digital and quantum computation with memory circuit elements. Proc. IEEE 100, 2071–2080 (2012).

    Article  Google Scholar 

  31. 31.

    Jeong, D. S. & Hwang, C. S. Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 30, 1704729 (2018).

    Article  Google Scholar 

  32. 32.

    Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  Google Scholar 

  33. 33.

    Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37, 3311–3325 (1997).

    Article  Google Scholar 

  34. 34.

    Sheridan, P. M., Du, C. & Lu, W. D. Feature extraction using memristor network. IEEE Trans. Neural Netw. Learn. Syst. 27, 2327–2336 (2016).

    Article  Google Scholar 

  35. 35.

    Rozell, C. J., Johnson, D. H., Baraniuk, R. G. & Olshausen, B. A. Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 20, 2526–2563 (2008).

    MathSciNet  Article  Google Scholar 

  36. 36.

    Lever, J., Krzywinski, M. & Altman, N. Points of significance: principal component analysis. Nat. Methods 14, 641–642 (2017).

    Article  Google Scholar 

  37. 37.

    Masters, D. & Luschi, C. Revisiting small batch training for deep neural networks. Preprint at https://arxiv.org/abs/1804.07612 (2018).

  38. 38.

    Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. On large-batch training for deep learning: generalization gap and sharp minima. Preprint at https://arxiv.org/abs/1609.04836 (2016).

  39. 39.

    Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput. Des. Integr. Circuits Syst. 37, 3067–3080 (2018).

    Article  Google Scholar 

  40. 40.

    Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

    Article  Google Scholar 

  41. 41.

    Zidan, M. A. et al. Field-programmable crossbar array (FPCA) for reconfigurable computing. IEEE Trans. Multi-scale Comput. Syst. 4, 698–710 (2017).

    Article  Google Scholar 

  42. 42.

    Mikhailenko, D., Liyanagedera, C., James, A. P. & Roy, K. M2CA: modular memristive crossbar arrays. In Proceedings of 2018 IEEE International Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

  43. 43.

    Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron. 1, 216–222 (2018).

    Article  Google Scholar 

  44. 44.

    Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In Proceedings of 43rd International Symposium on Computer Architecture 14–26 (IEEE, 2016).

  45. 45.

    Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 33 (2016).

    Article  Google Scholar 

  46. 46.

    Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized neural networks: training neural networks with low precision weights and activations. Preprint at https://arxiv.org/abs/1609.07061 (2016).

  47. 47.

    Jacob, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. Preprint at https://arxiv.org/abs/1712.05877 (2017)

  48. 48.

    Bishop, C. M. Pattern Recognition and Machine Learning Vol. 4 (Springer, 2006).

  49. 49.

    Mangasarian, O. L., Street, W. N. & Wolberg, W. H. Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43, 570–577 (1995).

    MathSciNet  Article  Google Scholar 

  50. 50.

    Dheeru, D. & Karra Taniskidou, E. Machine Learning Repository (Univ. California–Irvine, 2017).

Download references

Acknowledgements

The authors acknowledge inspiring discussions with C. Liu, T. Chou, P. Brown, M.A. Zidan and P.M. Sheridan. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) through award HR0011-13-2-0015, the National Science Foundation (NSF) through awards CCF-1617315 and 1734871, and the Applications Driving Architectures (ADA) Research Centre, a JUMP Centre co-sponsored by SRC and DARPA.

Author information

Affiliations

Authors

Contributions

F.C., J.M.C., S.H.L., Z.Z., M.P.F. and W.D.L. conceived the project and constructed the research frame. S.H.L. prepared the memristor arrays and performed device integration. J.M.C., Y.L., V.B., Z.Z. and M.P.F. designed the CMOS chip. F.C. and J.M.C. prepared the test hardware and software platform. F.C. and S.H.L. performed the network measurements and software simulations. W.D.L. directed the project. F.C., J.M.C., S.H.L., Z.Z., M.P.F. and W.D.L. analysed the experimental data and wrote the manuscript. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Wei D. Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Supplementary notes 1–11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Correll, J.M., Lee, S.H. et al. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat Electron 2, 290–299 (2019). https://doi.org/10.1038/s41928-019-0270-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing