Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A flexible phased array system with low areal mass density

Abstract

Phased arrays are multiple antenna systems capable of forming and steering beams electronically using constructive and destructive interference between sources. They are employed extensively in radar and communication systems but are typically rigid, bulky and heavy, which limits their use in compact or portable devices and systems. Here, we report a scalable phased array system that is both lightweight and flexible. The array architecture consists of a self-monitoring complementary metal–oxide–semiconductor-based integrated circuit, which is responsible for generating multiple independent phase- and amplitude-controlled signal channels, combined with flexible and collapsible radiating structures. The modular platform, which can be collapsed, rolled and folded, is capable of operating standalone or as a subarray in a larger-scale flexible phased array system. To illustrate the capabilities of the approach, we created a 4 × 4 flexible phased array tile operating at 9.4–10.4 GHz, with a low areal mass density of 0.1 g cm−2. We also created a flexible phased array prototype that is powered by photovoltaic cells and intended for use in a wireless space-based solar power transfer array.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phased array system architecture and its capabilities.
Fig. 2: Photographs of the proof-of-concept active phased array.
Fig. 3: Flexible fractal inspired modified patch antenna.
Fig. 4: Power synthesis and control unit.
Fig. 5: Performance of the 4 × 4 FPA system prototype.
Fig. 6: Photographs of a 4 × 4 FPA tile integrated with PV solar cells and concentrators.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

High-level description of the code created to drive the hardware is available from the corresponding author upon reasonable request.

References

  1. Skolnik, M. I. Introduction to Radar Systems 3rd edn (McGraw-Hill, 2001).

  2. Haykin, S., Litva, J. & Shepherd, T. J. Radar Array Processing. (Springer, 1993).

  3. Xu, L. & Li, J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Trans. Signal Process. 55, 2375–2385 (2007).

    Article  MathSciNet  Google Scholar 

  4. Bergin, J., McNeil, S., Fomundam, L. & Zulch, P. MIMO phased array for SMTI radar. In Proceedings of IEEE Aerospace Conference 1–7 (IEEE, 2008).

  5. Browning, J. P., Fuhrmann, D. R. & Rangaswamy, M. A hybrid mimo phased-array concept for arbitrary spatial beampattern synthesis. In Proceedings of IEEE Digital Signal Processing Signal Processing Education Workshop (DSP/SPE) 446–450 (IEEE, 2009).

  6. Fuhrmann, D., Browning, P. & Rangaswamy, M. Constant-modulus partially correlated signal design for uniform linear and rectangular MIMO radar arrays. In Proceedings of 4th IEEE International Conference on Waveform Diversity Design (WDD) 197–201 (IEEE, 2009).

  7. Fuhrmann, D., Browning, P. & Rangaswamy, M. Signaling strategies for the hybrid MIMO phased-array radar. IEEE J. Sel. Top. Signal Process. 4, 66–78 (2010).

    Article  Google Scholar 

  8. Heberling, W. & Frasier, S. J. Evaluation of phased-array weather-radar polarimetry at X-band. In IEEE Radar Conference 0851-0855 (IEEE, 2018).

  9. Zrnic, D. S. et al. Agile-beam phased array radar for weather observations. Bull. Am. Meteorol. Soc. 88, 1753–1766 (2007).

    Article  Google Scholar 

  10. Stailey, J. E. & Hondl, K. D. Multifunction phased array radar for aircraft and weather surveillance. Proc. IEEE 104, 649–659 (2016).

    Article  Google Scholar 

  11. Kam, D. G. et al. LTCC packages with embedded phased-array antennas for 60 GHz communications. IEEE Microw. Wireless Compon. Lett. 21, 142–144 (2011).

    Article  Google Scholar 

  12. Liu, C., Guo, Y., Bao, X. & Xiao, S. 60 GHz LTCC integrated circularly polarized helical antenna array. IEEE Trans. Antennas Propag. 60, 1329–1335 (2012).

    Article  Google Scholar 

  13. Yeh, Y.-S., Balboni, E. & Floyd, B. A 28-GHz phased-array transceiver with series-fed dual-vector distributed beamforming. In Proceedings of 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 65–68 (IEEE, 2017).

  14. Sadhu, B. et al. A 28 GHz 32-element phased array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. In Proceedings of IEEE International Solid-State Circuits Conference Digest Technical Papers 128–129 (IEEE, 2017).

  15. Marpaung, D. et al. Towards a broadband and squint-free ku-band phased array antenna system for airborne satellite communications. In Proceedings of the Fifth IEEE European Conference on Antennas and Propagation (EuCAP) 2274–2778 (IEEE, 2011).

  16. Lambard, T. et al. Ka-band phased array antenna for high-data-rate SATCOM. IEEE Antennas Wireless Propag. Lett. 11, 256–259 (2012).

    Article  Google Scholar 

  17. Natarajan, A. et al. A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46, 1059–1075 (2011).

    Article  Google Scholar 

  18. Valdes-Garcia, A. et al. A fully-integrated dual polarization 16-element W-band phased-array transceiver in SiGe BiCMOS. In Proceedings of 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 375–378 (IEEE, 2013).

  19. Gu, X. et al. An enhanced 64-element dual-polarization antenna array package for W-band communication and imaging applications. In Proceedings of IEEE Electronic Components Technology Conference 1005–1009 (IEEE, 2018).

  20. Kim, S. et al. Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas Wireless Propag. Lett. 11, 663–666 (2012).

    Article  Google Scholar 

  21. Basu, S., Schwartz, S. & Pentland, A. Wearable phased arrays for sound localization and enhancement. In Proceedings of IEEE International Symposium on Wearable Computing 103–110 (IEEE, 2000).

  22. Ha, S. J. & Jung, C. W. Reconfigurable beam steering using a microstrip patch antenna with a U-slot for wearable fabric applications. IEEE Antennas Wireless Propag. Lett. 10, 1228–1231 (2011).

    Article  Google Scholar 

  23. Gladden, C. A. & Parelman, M. H. Rapidly deployable emergency communication system. US patent 4,152,647 (1979).

  24. Impson, J. D., Mehravari, N., Moody, J. O. & Steinbrecher, E. R. Rapidly deployable emergency communications system and method. US patent 7,720,458 B2 (2003).

  25. Kotzin, M., Walczak, T. J. & Krenz, E. Emergency deployable GPS antenna. US patent 7,098,855 (2006).

  26. Kabacik, K., Bjalkowski, M. E. & Bonefacic, D. Cylindrical array antennas and their applications in wireless communications systems. In Proceedings of 16th International Conference on Applied Electromagnetics and Communications 169–172 (KoREMA, 2001).

  27. Keskilammi, M. & Kivikoski, M. Cylindrical patch antenna array for RFID applications. In Proceedings of INICA 1–4 (2003).

  28. Athanasopoulos, N., Mourtzoukos, K., Stratakos, G., Makri, R. & Uzunoglu, N. Development and testing of a 10 GHz phased-array cylindrical-antenna transmitting system incorporating a least-squares radiation-pattern synthesis technique. IEEE Antennas Propag. Mag. 50, 80–88 (2008).

    Article  Google Scholar 

  29. Anagnostou, D. E. et al. Design, fabrication and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Trans. Antennas Propag. 54, 422–432 (2006).

    Article  Google Scholar 

  30. Herd, J. S. & Fenn, A. J. Design considerations for space-based radar phased arrays. In Proceedings o f IEEE MTT-S International Microwave Symposium Digest 1631–1634 (IEEE, 2005).

  31. Jeon, S. et al. A scalable 6 to 18 GHz concurrent dual-band quadbeam phased-array receiver in CMOS. IEEE J. Solid-State Circuits 43, 2660–2673 (2008).

    Article  Google Scholar 

  32. Vallecchi, A. & Biffi Gentili, G. An inflatable deployable polarization agile microstrip antenna for space-borne synthetic aperture radar systems. In Proceedings of IEEE International Symposium on Phased Array Systems and Technology 76–81 (IEEE, 2003).

  33. Celis, M. A. et al. Local thermal management for space-borne inflatable RF antennas. In Proceedings of 8th IEEE Intersociety Conference on Thermal & Thermomechanical Phenomena in Electronic Systems (ITherm 2002) 1015–1019 (IEEE, 2002).

  34. Hajimiri, A. et al. Phased array systems in silicon. IEEE Commun. Mag. 42, 122–130 (2004).

    Article  Google Scholar 

  35. Hashemi, H., Guan, X. & Hajimiri, A. A fully integrated 24 GHz 8-path phased-array receiver in silicon. In IEEE International Solid-State Circuits Conference Digest of Technical Papers 390–391 (IEEE, 2004).

  36. Natarajan, A., Floyd, B. & Hajimiri, A. A bidirectional RF-combining 60 GHz phased-array front-end. In IEEE International Solid-State Circuits Conference Digest of Technical Papers 202–204 (IEEE, 2007).

  37. Buckwalter, J. F., Babakhani, A., Komijani, A. & Hajimiri, A. An integrated subharmonic coupled-oscillator scheme for a 60-GHz phased-array transmitter. IEEE Trans. Microw. Theory Tech. 54, 4271–4280 (2006).

    Article  Google Scholar 

  38. Sengupta, K. & Hajimiri, A. A 0.28 THz 4 × 4 power-generation and beam-steering array. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2012).

  39. Huang, J. Paper-thin membrane aperture-coupled L-band antennas. IEEE Trans. Antennas Propag. 53, 2499–2502 (2005).

    Article  Google Scholar 

  40. Preisner, M., Maleszka, T., Wydymus, D. & Kabaciki, P. Integrated inflatable patch antenna for planar and cylindrical antenna arrays. In Proceedings of the 10 th IEEE European Conference on Wireless Technology 122–125 (IEEE, 2007).

  41. Preisner, M., Maleszka, T. & Kabaciki, P. Investigations into patch elements developed for use in inflatable antenna arrays. In IEEE Antennas & Propagation Society International Symposium Digest 3644–3647 (IEEE, 2007).

  42. Kabacik, P. & Preisner, M. Tolerance analysis of s-band inflatable antenna arrays. In Proceedings of 1 st IEEE European Conference on Antennas & Propagation 1–6 (IEEE, 2006).

  43. Balanis, C. A. Antenna Theory: Analysis and Design 3rd edn (Wiley, 2005).

  44. Sierpiński, W. Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C. R. Acad. Sci. 162, 629–632 (1916).

    MATH  Google Scholar 

  45. Kingsley, N., Anagnostou, D. E., Tentzeris, M. & Papapolymerou, J. RF MEMS sequentially reconfigurable sierpinski antenna on a flexible organic substrate with novel DC-biasing technique. J. Microelectromech. Syst. 16, 1185–1192 (2007).

    Article  Google Scholar 

  46. Sivia, J. S., Pharwaha, A. P. S. & Kamal, T. S. Design of Sierpinski carpet fractal antenna using artifical neural network. Int. J. Comput. Appl. 68, 5–10 (2013).

    Google Scholar 

  47. Batra, R., Zade, P. L. & Sagne, D. Design and implementation of Sierpinski carpet fractal antenna for wireless communication. Int. J. Sci. Res. Eng. Technol. 1, 043–047 (2012).

    Google Scholar 

  48. Radonic, V., Palmer, K., Stojanovic, G. & Crnojevic-Bengin, V. Flexible Sierpinski carpet fractal antenna on a Hilbert slot patterned ground. Int. J. Antennas Propag. 2012, 980916 (2012).

    Article  Google Scholar 

  49. Zhang, B., Allen, P. E., Huard, J. M. & Fast Switching, A. PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25-μm CMOS. IEEE J. Solid-State Circuits 38, 855–865 (2003).

    Article  Google Scholar 

  50. Bohn, F., Abiri, B. & Hajimiri, A. Fully integrated CMOS X-band power amplifier Quad with current reuse and dynamic digital feedback (DDF) capabilities. In Proceedings of 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 208–211 (IEEE, 2017).

  51. Kimionis, J. et al Energy harvesting with 3D inkjet-printed antennas. In Proceedings of IEEE MTT-S International Microwave Symposium 1–4 (IEEE, 2015).

  52. Gdoutos, E. et al. A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications. 2018 AIAA Spacecraft Structures Conference 2202 (AIAA, 2018).

  53. Simons, R. N. & Lee, R. Q. Feasibility study of optically transparent microstrip patch antennas. In IEEE Antennas Propagation Society International Symposium on Radio Science Meeting Digest 2100–2103 (IEEE, 1997).

  54. Simons, R. et al. Optically transparent microstrip patch and slot antennas. US patent 5,872,542 (1999).

  55. Huang, J. & Zawadzki, M. Antennas integrated with solar arrays for space vehicle applications. In Proceedings of 5 th IEEE International Symposium on Antennas, Propagation & EM Theory (ISAPE 2000) 86–89 (IEEE, 2000).

  56. Hodges, R. E. et al. ISARA—Integrated solar array and reflectarray CubeSat deployable Ka-band antenna. In Proceedings of IEEE International Symposium on Antennas and Propagation 2141–2142 (IEEE, 2015).

  57. Vaidya, N. et al. Lightweight carbon fiber mirrors for solar concentrator applications. In Proceedings of IEEE PVSC 572–577 (IEEE, 2017).

  58. Kelzenberg, M. D. et al. Ultralight energy converter tile for the space solar power initiative. In Proceedings of IEEE PVSC 3357–3359 (IEEE, 2018).

  59. Jayamon, J. et al. Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers. IEEE J. Solid-State Circuits. 51, 2027–2039 (2016).

  60. Chen, J.-H. et al. A wideband power amplifier in 45 nm CMOS SOI technology for X band applications. IEEE Microw. Wireless Comp. Lett. 23, 587–589 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Caltech Space Solar Power Project and Northrop Grumman Corporation for partial support of the work.

Author information

Authors and Affiliations

Authors

Contributions

A.H. conceived the idea of the flexible RF phased array. M.R.M.H., A.C.F., M.G.-K. and A.H. designed the flexible array and its electromagnetic components. M.R.M.H., A.C.F., M.G.-K., F.B., B.A. and A.S. performed the reported measurements of the system. B.A., F.B., M.G.-K., A.S. and A.H. designed and implemented the integrated circuit. M.D.K., E.L.W., P.E., N.V., E.E.G., C.L., F.R., S.P. and H.A.A. contributed to the design and implementation of the PV concentrators and cells. M.R.M.H., A.C.F., A.H. and M.G.-K. prepared the manuscript.

Corresponding author

Correspondence to Mohammed Reza M. Hashemi.

Ethics declarations

Competing interests

A.H., B.A. and F.B. are co-founders and shareholders of Auspion Inc., which is involved in wireless power transfer applications. A.S. is currently employed at Auspion Inc. Several patent applications that cover certain aspects of the design of the integrated circuit and flexible substrate have been filed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Supplementary Tables 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.R.M., Fikes, A.C., Gal-Katziri, M. et al. A flexible phased array system with low areal mass density. Nat Electron 2, 195–205 (2019). https://doi.org/10.1038/s41928-019-0247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-019-0247-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing