Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-healing soft electronics

Abstract

Biological systems have the powerful ability to self-heal. Human skin can, for example, autonomously heal from wounds of various degrees, allowing it to restore its mechanical and electrical properties. In contrast, human-made electronic devices degrade over time due to fatigue, corrosion or damage incurred during operation, leading to device failure. Self-healing chemistry has emerged in recent years as a promising method for constructing soft electronic materials that are mechanically robust and can self-repair. Here we review the development of self-healing electronic materials and examine how such materials can be used to fabricate self-healing electronic devices. We explore the potential new functionalities of self-healing electronic systems that would not typically be possible with conventional electronic systems and discuss the current challenges in delivering self-healing soft electronics for practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Self-healing soft electronics.
Fig. 2: Artificial self-healing systems.
Fig. 3: Self-healing process of electronic materials.
Fig. 4: Self-healing electronic devices.
Fig. 5: Self-healing electronic system.

References

  1. 1.

    Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Article  Google Scholar 

  2. 2.

    Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article  Google Scholar 

  3. 3.

    Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Article  Google Scholar 

  4. 4.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  Google Scholar 

  5. 5.

    Chu, B., Burnett, W., Chung, J. W. & Bao, Z. Bring on the bodyNET. Nature 549, 328–330 (2017).

    Article  Google Scholar 

  6. 6.

    Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  7. 7.

    Rogers, J., Malliaras, G. & Someya, T. Biomedical devices go wild. Sci. Adv. 4, 2–4 (2018).

    Article  Google Scholar 

  8. 8.

    Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article  Google Scholar 

  9. 9.

    Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  Google Scholar 

  10. 10.

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  Google Scholar 

  11. 11.

    Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  Google Scholar 

  12. 12.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  Google Scholar 

  13. 13.

    Tan, Y. J., Wu, J., Li, H. & Tee, B. C. K. Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 10, 15331–15345 (2018).

    Article  Google Scholar 

  14. 14.

    Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).

    Article  Google Scholar 

  15. 15.

    Luo, C. S., Wan, P., Yang, H., Shah, S. A. A. & Chen, X. Healable transparent electronic devices. Adv. Funct. Mater. 27, 1606339 (2017).

    Article  Google Scholar 

  16. 16.

    Huynh, T. P., Sonar, P. & Haick, H. Advanced materials for use in soft self-healing devices. Adv. Mater. 29, 1604973 (2017).

    Article  Google Scholar 

  17. 17.

    White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  Google Scholar 

  18. 18.

    Hager, B. M. D., Greil, P., Leyens, C., Van Der Zwaag, S. & Schubert, U. S. Self-healing materials. Adv. Mater. 22, 5424–5430 (2010).

    Article  Google Scholar 

  19. 19.

    Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    Article  Google Scholar 

  20. 20.

    Yang, Y. & Urban, M. W. Self-healing of polymers via supramolecular chemistry. Adv. Mater. Interfaces 5, 1800384 (2018).

    Article  Google Scholar 

  21. 21.

    Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S. & White, S. R. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016).

    Article  Google Scholar 

  22. 22.

    Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  Google Scholar 

  23. 23.

    Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    Article  Google Scholar 

  24. 24.

    Urban, M. W. et al. Key-and-lock commodity self-healing copolymers. Science 362, 220–225 (2018).

    Article  Google Scholar 

  25. 25.

    Kathan, M. et al. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).

    Article  Google Scholar 

  26. 26.

    Lai, J. C. et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater. 28, 8277–8282 (2016).

    Article  Google Scholar 

  27. 27.

    Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).

    Article  Google Scholar 

  28. 28.

    Yan, X. et al. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 140, 5280–5289 (2018).

    Article  Google Scholar 

  29. 29.

    Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    Article  Google Scholar 

  30. 30.

    Speck, O., Schlechtendahl, M., Borm, F., Kampowski, T. & Speck, T. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi — an adaptation to seasonal drought stress. Beilstein J. Nanotechnol. 9, 175–186 (2018).

    Article  Google Scholar 

  31. 31.

    Yang, Y., Davydovich, D., Hornat, C. C., Liu, X. & Urban, M. W. Leaf-inspired self-healing polymers. Chem. 4, 1928–1936 (2018).

    Article  Google Scholar 

  32. 32.

    Yang, W. et al. On the tear resistance of skin. Nat. Commun. 6, 6649 (2015).

    Article  Google Scholar 

  33. 33.

    Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article  Google Scholar 

  34. 34.

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  Google Scholar 

  35. 35.

    Palleau, E., Reece, S., Desai, S. C., Smith, M. E. & Dickey, M. D. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589–1592 (2013).

    Article  Google Scholar 

  36. 36.

    Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    Article  Google Scholar 

  37. 37.

    Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    Article  Google Scholar 

  38. 38.

    Cao, Y. et al. A highly stretchy, transparent elastomer with the capability to automatically self-heal underwater. Adv. Mater. 30, 1804602 (2018).

    Article  Google Scholar 

  39. 39.

    Gong, C. et al. A healable, semitransparent silver nanowire-polymer composite conductor. Adv. Mater. 25, 4186–4191 (2013).

    Article  Google Scholar 

  40. 40.

    Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  Google Scholar 

  41. 41.

    Lee, H.-R., Kim, C.-C. & Sun, J.-Y. Stretchable ionics — a promising candidate for upcoming wearable devices. Adv. Mater. 30, 1704403 (2018).

    Article  Google Scholar 

  42. 42.

    Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  Google Scholar 

  43. 43.

    Kim, C. C., Lee, H. H., Oh, K. H. & Sun, J. Y. Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016).

    Article  Google Scholar 

  44. 44.

    Sun, J. Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

    Article  Google Scholar 

  45. 45.

    Cao, Y. et al. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017).

    Article  Google Scholar 

  46. 46.

    Cao, Y. et al. Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019).

    Article  Google Scholar 

  47. 47.

    Chen, D. & Pei, Q. Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017).

    Article  Google Scholar 

  48. 48.

    Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012).

    Article  Google Scholar 

  49. 49.

    D’Elia, E., Barg, S., Ni, N., Rocha, V. G. & Saiz, E. Self-healing graphene-based composites with sensing capabilities. Adv. Mater. 27, 4788–4794 (2015).

    Article  Google Scholar 

  50. 50.

    Yang, Y. et al. Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy 17, 1–9 (2015).

    Article  Google Scholar 

  51. 51.

    Li, J. et al. Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide Diels-Alder cycloaddition polymer. ACS Nano 8, 12874–12882 (2014).

    Article  Google Scholar 

  52. 52.

    He, Y. et al. A self-healing electronic sensor based on thermal-sensitive fluids. Adv. Mater. 27, 4622–4627 (2015).

    Article  Google Scholar 

  53. 53.

    Bai, S. et al. Healable, transparent, roomerature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11, 5807–5813 (2015).

    Article  Google Scholar 

  54. 54.

    Wang, H. et al. A mechanically and electrically self-healing supercapacitor. Adv. Mater. 26, 3638–3643 (2014).

    Article  Google Scholar 

  55. 55.

    Sun, H. et al. Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 53, 9526–9531 (2014).

    Article  Google Scholar 

  56. 56.

    Huang, Y. et al. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015).

    Article  Google Scholar 

  57. 57.

    Bandodkar, A. J. et al. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2, e1601465 (2016).

    Article  Google Scholar 

  58. 58.

    Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).

    Article  Google Scholar 

  59. 59.

    Huynh, T. P. & Haick, H. Self-healing, fully functional, and multiparametric flexible sensing platform. Adv. Mater. 28, 138–143 (2016).

    Article  Google Scholar 

  60. 60.

    Kang, J. et al. Modular and reconfigurable stretchable electronic systems. Adv. Mater. Technol. 4, 1800417 (2018).

    Article  Google Scholar 

  61. 61.

    Zheng, G. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

J.K. and Z.B. acknowledge support by the Air Force Office of Scientific Research (grant no. FA9550-18-1-0143) and Samsung Electronics.

Author information

Affiliations

Authors

Contributions

J.K and Z.B conceived the project and carried out the discussions. J.K., J.B.-H.T. and Z.B wrote the manuscript.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Tok, J.BH. & Bao, Z. Self-healing soft electronics. Nat Electron 2, 144–150 (2019). https://doi.org/10.1038/s41928-019-0235-0

Download citation

Further reading

Search

Quick links